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Reasoning about the Conant Gasket

M. Douglas McIlroy

Dartmouth College, Department of Computer Science

Technical report TR2023-1003

ABSTRACT

Previously conjectured properties of the Conant gasket, a particular non-

periodic tiling of the non-negative integer grid, are proved using new re-

currences. A slabwise periodicity property is identified and proved. Fur-

ther fractal properties are conjectured.

A Conant gasket, Gn, is a particular configuration of vertical and horizontal unit segments

drawn between adjacent points in the non-negative integer grid, as illustrated in Figure 2.

The union (also the limit as n goes to infinity) of all Gn constitutes a tiling of the first

quadrant by rectangles. The number of facets in Gn is enumerated by an integer sequence

defined at [OEIS, A328080]. Conant’s original sequence and its properties are more fully

discussed at [OEIS, A328078].* I am not aware of any pertinent peer-reviewed literature.

The main contribution of this note is an algebraic description of the Conant gasket. The

description yields an elegant program for constructing the figure and a formalism for

proving conjectures that fairly leap out of pictures like Figure 2. Conjectures about trans-

position and “ruler ticks” posted at [OEIS, A328078] are proved, as is a new theorem

about periodicity. Finally, conjectures about fractal properties are offered, in particular

about the taxonomy of facet shapes and the appearance of patches of symmetry.

1. Construction and algebraic formulation

The following construction creates even generations of the original Conant sequence of

figures. Its relation to the full sequence is more fully described in Section 3.1.

Coordinate values in Gn range from 0 through 2n. G0 is a unit square. This recipe, illus-

trated in Figure 1, generates Gn+1 from Gn:

Magnify Gn by doubling coordinate values.

Weav e 2n odd verticals from bottom to top.

Weav e 2n odd horizontals from left to right.

Terms used in the recipe and in subsequent discussion are defined as follows.

An odd vertical is a vertical line at an odd horizontal coordinate. Even vertical and

odd/even horizontal are defined similarly.

* A prior description has been said to be available to Facebook patrons at

https://www.facebook.com/groups/20666497429.
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Figure 1. Left: G1 magnified by a factor of 2. Center: after weaving odd ver-

ticals. Right: after weaving odd horizontals to complete G2.

To weave a vertical, trace the line from bottom to top beginning with with pen

down, then alternately raise and lower the pen upon encountering horizontal bars.

Horizontals are woven similarly from left to right, alternating at vertical bars.

A bar is a closed unit segment drawn with pen down. Other unit segments are

called gaps. Magnification turns one segment into two.

A facet is a region bounded by bars, with no bars in the interior. Facets are neces-

sarily rectangular.

A segment between point (i, j) and (i, j + 1) is said to emanate from point (i, j) or

from horizontal j and to encounter horizontal j + 1. Similarly a segment between

(i, j) and (i + 1, j) emanates from (i, j) or from vertical i and encounters vertical

j + 1.

The construction produces a unit square at the origin in every Gn. This unit square is sub-

sequently treated in exactly the same way as G0 was. By induction Gn contains Gk for

0 ≤ k ≤ n.

Define functions v(i, j) and h(i, j) on points (i, j) of the grid to have value 1 if a vertical

bar or horizontal bar respectively emanates from (i, j), otherwise 0. Formulas (1) and (3)

below describe the magnifying step; (2) and (4) describe the two weaving steps.

Notation. In formulas (1)-(4) and throughout this note, / is the integer quotient operator.

Sums of v and h values are taken mod 2.*

v(i, j) = v(i/2, j/2), i even (1)

v(i, j) =
j/2

k=0
Σ h(i, 2k), i odd (2)

h(i, j) = h(i/2, j/2), j even (3)

h(i, j) =
i

k=0
Σ v(k, j), j odd (4)

Formulas (1)-(4) define a transformation, C (for Conant), from values on the grid to val-

ues on the grid. Although C was motivated by construction of Gn+1 from Gn, it in fact ap-

plies to the whole first quadrant. The limit, G, of the iteration Gn+1 = C(Gn) is a

* Equivalently one may understand v and h as Boolean-valued functions and addition of

Booleans as exclusive-or. Program 1 is written in these terms.
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Figure 2. Conant gasket G5. The outer boundary of each contained Gn is

marked n. Circular symbols identify facet families described in Section 6.

configuration that contains Gn for all n. In other words, G—the ultimate Conant gasket—

is the fixed point of C that contains G0. Further inspection reveals that the initial condi-

tion can be reduced to specifying only that two bars emanate from (0,0).

To simplify computation, sums in equations (2) and (4) may be rewritten inductively.*

v(i, j) = v(i, j − 2) + h(i, 2( j/2))

(3)= v(i, j − 2) + h(i/2, j/2), i odd (5)

h(i, j) = h(i − 1, j) + v(i, j), j odd (6)

In a notation that we shall use often, “(3)” above “=” in (5) refers to a formula that justi-

fies the equivalence.

Arguments j − 2 and i − 1 in (5) and (6) can fall below the lower limits of the sums in (2)

and (4). Accordingly we define

v(i, −2) = 0 (7)

v(i, −1) = 0 (8)

h(−1, j) = 0 (9)

Program 1 uses these conventions.

* Use of h(i/2, j/2) instead of h(i, 2( j/2)) in (5) eliminates the dependence of v(i, j) on

h(i, j) when i is odd and j is even, allowing one to compute h(i, j) after v(i, j) reg ardless

of the values of i and j.
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Program 1. This C99 [C99] program constructs an initial m × n portion of the infinite Co-

nant gasket. Function conant calculates Boolean fields addressed as v(i, j) and h(i, j) for

−1 ≤ i ≤ m and −2 ≤ j ≤ n. To provide negative indices, the origin of array G is offset

from that of an underlying array, base.

#define N 15 /* upper bound: m,n <= 2**N */

struct {

_Bool v:1;

_Bool h:1;

} base[(1<<N)+2][(1<<N)+3];

#define G(i,j) base[(i)+1][(j)+2]

#define v(i,j) G(i,j).v

#define h(i,j) G(i,j).h

#define even(n) (n&1) == 0

void conant(int m, int n) {

int i, j;

v(0,0) = h(0,0) = 1;

for(i=0; i<=m; i++)

for(j=0; j<=n; j++) {

v(i,j) = even(i)? v(i/2,j/2): v(i,j-2) ˆ h(i/2,j/2);

h(i,j) = even(j)? h(i/2,j/2): h(i-1,j) ˆ v(i,j);

}

}

2. Selected values

Throughout this section i, j and n range over the nonnegative integers unless otherwise

stated.

In the limit as n goes to infinity, the original construction implies that the edges of the

first quadrant are marked by continuous lines. This property is reproduced by calculation.

Repeated use of (1) and (3) respectively equate v(0, j) to v(0, 0) = 1 and h(i, 0) to

h(0, 0) = 1.

v(0, j) = 1 (10)

h(i, 0) = 1 (11)

We may also confirm that the construction produces “tick marks”—bars at integer coordi-

nates—perpendicular to both edges of G. If i is even and greater than 0, repeated use of

(1) shows that v(i, 0) = v(k, 0) for some odd k. If i is odd, (2) and (11) show that

v(i, 0) = h(i/2, 0) = 1. Similar reasoning about h(0, j) with (3) and (4), completes the

proof of

v(i, 0) = 1 (12)

h(0, j) = 1 (13)

Because the vertical through (i, j) with j odd is drawn before the horizontal through the

same point, vertical bars come in even-odd pairs, as do vertical gaps. Horizontal pairing

is confined to even horizontals, including, trivially, horizontal 0, on which every segment

is a bar.

v(i, 2 j) = v(i, 2 j + 1) (14)

h(2i, 2 j)
(3)= h(2i + 1, 2 j) (15)

To verify (14) algebraically, apply (1) to both sides if i is even; apply (2) if i is odd. In

particular v(i, 1) = v(i, 0), which by (12) is 1.
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v(i, 1) = 1 (16)

It is easy to calculate the distribution of bars on the infinite verticals and horizontals at the

outer edges of Gn for all n, as marked in Figure 2. Apply (3) n times to reduce h(i, 2n) to

h(i/2n, 1). Then

h(i, 2n)
(1)= h(i/2n, 1)

(4)=
i/2n

k=0
Σ v(k, 1)

(16)=
i/2n

k=0
Σ 1 = i/2n + 1

Taken modulo 2, i/2n is the same as the 2n’s bit of the binary representation of i, which

we call bit(n, i).

h(i, 2n) = bit(n, i) + 1 (17)

In other words, length-2n intervals of bars and gaps alternate on horizontal 2n.

For segments on the produced right edge of Gn, n-fold use of (1) reduces v(2n, j) to

v(1, j/2n)
(2)=

j/2n+1

k=0
Σ h(0, k)

(13)=
j/2n+1

k=0
Σ 1 = j/2n+1 + 1 (mod 2)

Whence

v(2n, j) = bit(n + 1, j) + 1 (18)

For even i, v(i, 2)
(1)(16)= 1. For odd i, v(i, 2) satisfies

v(i, 2)
(5)= v(i, 0) + h(i/2, 1)

(12)= 1 + h(i/2, 1)

and thus alternates between 0 and 1 per (17). Interleaving values 1,1 for even i with 0,1

for odd i creates a repeating pattern: 1,0,1,1.

v(i, 2) =




0, i = 1 (mod 4)

1, otherwise
(19)

3. Transpose and stretch

Neil Sloane observed that Gn transposed about the diagonal through (0,0) and stretched

vertically by a factor of 2 becomes the left half of Gn+1 with odd horizontals absent; see

Figure 3. We shall see that similarly transposing and stretching that left half produces

Gn+1 with odd verticals absent.

In algebraic terms, Sloane’s conjecture is

v(i, j) = h( j, 2i) (20)

h(i, j) = v( j, 2i)
(14)= v( j, 2i + 1) (21)

(20) and (21) hold according to (10) and (11) when either i or j is 0. Otherwise, assume

(20) and (21) hold at all (i, j) distinct from (i′, j′) where 0 ≤ i ≤ i′ and 0 ≤ j ≤ j′.
If i′) is even, (20) holds at (i′, j′) because the two sides may be reduced thus

v(i′, j′) (1)= v(i′/2, j′/2)

h( j′, 2i′) (3)= h( j′/2, i′)
to values that have been assumed equal. If i′ is odd, the reductions
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v(i′, j′) (2)=
j′

k=0
Σ h(i′, 2k)

(3)=
j′/2

k=0
Σ h(i′/2, k)

h( j′, 2i′) (3)= h( j′/2, i′) (4)=
j′/2

k=0
Σ v(k, i′)

yield sums whose corresponding terms have been assumed equal according to (21). This

completes the proof of (20). (21) may be proved similarly by case analysis on j′.

(3,1)

(1,3)

(1,6)

Figure 3. Transpose and stretch. Left: G2. Middle: G2 transposed. Right: G3;

thick segments are a vertically stretched copy of the middle image The trans-

formation of a sample point is indicated. In the notation of Section 3.1 the

middle figure is T (G2), and the thick segments in the right image are

(T ; Sv)(G2).

As a consequence of the transpose-and-stretch relation, the sequence of facet widths

along the left edge of G is the same as the sequence of facet heights along the bottom

edge, with every facet twinned.

3.1. Relationship to Conant’s original sequence

We shall develop a non-alternating formula for Conant’s original sequence, in which fig-

ures with newly woven verticals (but not horizontals) occur between successive Gn’s.

Let M , Wv, and Wh denote the three steps that make up C: magnification, vertical weave,

and horizontal weave. In these terms, C may be written

C = M ; Wv ; Wh

The operator-composition symbol “ ; ”  (borrowed from relational algebra) may be read as

“then”. The composite operation applies the composed operators in left-to-right order.

Magnification can be decomposed into a horizontal stretch Sh followed by a vertical

stretch Sv.

C = Sh ; Sv ; Wv ; Wh

Because Sv and Wv commute, we can arrange operations so stretches occur “just in time”

for the weaves.

C = Sh ; Wv ; Sv ; Wh = (Sh ; Wv) ; (Sv ; Wh) (22)

The first and second parenthesized pairs in (22) may be identified as recipes for Conant’s

odd and even generations respectively.

Transformation (22) is unchanged if we transpose the figure before performing the first

stretch-weave pair and then transpose back. When the figure is transposed, the directions

of stretch and weave rev erse. Transposition is denoted T .
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C = (T ; Sv ; Wh ; T ) ; (Sv ; Wh)

Change the association of operations

C = (T ; Sv ; Wh)2 = Q2

where Q denotes the indicated functional square root of C.

The explanation of Figure 3 reveals that the left half of Gn+1 is exactly Q(Gn). If we call

the left half Hn+1, then the sequence Qk(G0) for k = 0, 1, 2, . . . is

G0, H1, G1, H2, G2, . . . (23)

As each figure is contained in its successor, the limit G is the fixed point of Q that con-

tains G0.

Conant’s original sequence is the same as (23) with odd-numbered generations trans-

posed. Thus Conant’s 2n − 1st generation is T (Hn). Since T 2 is the identity transform,

Conant’s kth generation may be expressed as (Qk ; T k)(G0).

4. Periodicity

Let Sn be the horizontal slab in G comprising grid points (i, j) for 0 ≤ j ≤ 2n and seg-

ments that emanate from those points; see Figure 4. (The notation Sn is not related to Sh

and Sv in Section 3.) Notice that while Sn contains Gn and their heights ( j-ranges) are the

same, vertical segments that emanate from points (i, 2n) belong to Sn but fall outside Gn.

Periodicity theorem. In Sn, v(i, j) and h(i, j) are periodic in i with period 2n+1.

In other words, if 0 < j ≤ 2n, then at most the least significant n + 1 bits of i are germane

in computing v(i, j) and h(i, j). Also, by the periodicity corollary below, if 0  < i ≤ 2n,

then at most the least significant n + 2 bits of j are germane.* If either i or j is zero,

v(i, j) = h(i, j)
(10)(11)= 1

0
0

Bn

2n−1

Bn+1

2n

2n+1

2n+1 2n+2

Bn

Sn

Sn+1

Figure 4. Nomenclature for periodicity theorem. Slabs Sn and Sn+1 begin at

the left edge. Left and top boundaries of blocks Bn and Bn+1 belong to the

blocks; right and bottom boundaries do not.

The theorem holds for n = 0: (11), (12) and (16) establish period 1 (hence also period 2)

for all functions except h(i, 1), which has period 2 per (17).

* A slight refinement: according to (14), the value of v(i, j) does not depend on the least

significant bit of j.
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The theorem also holds for n = 1: h(i, 2) has period 4 per (17), as does v(i, 2) per (19).

The “even skeleton”—all even-vertical or even-horizontal segments—of slab Sn+1 pro-

duced by doubling Sn necessarily has twice the period of Sn, as do odd verticals woven in

this skeleton. Odd horizontals are a different story. In fact, they hav e the same period, but

only because they happen to “get off on the same foot” in the second period as in the first,

i.e.

h(2n+1, j) = h(0, j)
(13)= 1, 0 ≤ j ≤ 2n (24)

The first equality in (24) remains to be proved. Equivalently, the final segment of an odd

horizontal j in Bn ought to be a gap:

h(2n+1 − 1, j)
(6)= h(2n+1, j) − v(2n+1, j)

(24)(18)= 0

That h(2n+1 − 1, j) is indeed a gap is confirmed by the following lemmas. The lemmas de-

pend on each other. They hav e been separated to untangle the proof, but can be justified

by mutual induction.

Vertical-bar lemma. The numbers of odd-vertical bars and all vertical bars that encounter

or emanate from each horizontal in Bn, where n > 1 is even, except the number of all ver-

tical bars that emanate from horizontal 2n is odd.

2n−1

i=0
Σ v(2i + 1, j) = 0 (25)

2n+1−1

i=0
Σ v(i, j) = 0, j < 2n (26)

2n+1−1

i=0
Σ v(i, 2n) = 1 (27)

The truth of the lemma for B2 follows from enumerating v(i, j) throughout the block; see

Table 1.

Table 1. Counting bars in block B2. Values of v(i, j) and h(i, j) are read from

Figure 2.

i 0 1 2 3 4 5 6 7

number of 1s

j v(i, j) odd i all i

3 1 0 1 1 1 0 1 1  2 6

4 1 1 0 0 1 0 1 1  2 5

For larger n, doubling causes the number of of even-vertical bars emanating from even

horizontal 2 j in the even skeleton of Bn+1 to be the same as the number of all vertical

bars that emanate from horizontal j in Bn and hence to be even or odd according as

j < 2n or j = 2n. The number of even vertical bars that encounter the first even horizontal

is even because Bn+1 sits atop two copies of Bn. Every bar emanating from one copy has

a twin that emanates from the other.

For the same reason the number of odd-vertical bars that encounter the first even horizon-

tal in Bn+1 is even. Because odd verticals are drawn before odd horizontals their parity

does not change at odd horizontals. The number of odd verticals that change parity at any

ev en horizontal in Bn+1 is the same as the number of even-odd pairs of bars on that
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horizontal, which is even according to the horizontal-bar lemma below. Thus the parities

of the number of odd-vertical bars that encounter or emanate from every even horizontal

in Bn+1 is the same:

2n−1

i=0
Σ v(2i + 1, j)

(5)=
2n−1

i=0
Σ (v(2i + 1, j − 2) + h(i, j/2))

(14)=
2n−1

i=0
Σ v(2i + 1, j − 1) +

2n−1

i=0
Σ h(i, j/2)

(28)=
2n−1

i=0
Σ v(2i + 1, j − 1)

Because an even number of odd-vertical bars encounters the first even horizontal in Bn+1,

the number encountering or emanating from every horizontal is even. This completes the

proof of the vertical-bar lemma.

Horizontal-bar lemma. The numbers of horizontal bars and of even-odd pairs of horizon-

tal bars on horizontal j in block Bn, where n > 1, is even

2n−1

i=0
Σ h(i, j) = 0 (28)

According to (15), even-horizontal bars occur in even-odd pairs. Doubling of even hori-

zontal j in Bn to make horizontal 2 j produces an even number of pairs and a fortiori an

ev en number of bars on horizontal 2 j.

The number of horizontal bars on odd horizontal j is given by

2n+1−1

i=0
Σ h(i, j)

(4)=
2n+1−1

i=0
Σ

i

k=0
Σ v(k, j) =

2n+1−1

k=0
Σ

2n+1−1

i=k
Σ v(k, j) =

2n+1−1

k=0
Σ (2n+1 − k)v(k, j)

When k is even, the last summand is even and does not contribute to the parity of the

sum. Thus the parity of the sum is the same as the parity of odd-vertical bars that emanate

from the horizontal, which is even according to (25). This completes the proof of the hor-

izontal-bar lemma.

With an even number of vertical bars crossing odd horizontals in Bn per the vertical-bar

lemma, the final horizontal segment on an odd horizontal must be a gap. This completes

the proof of the periodicity theorem.

The pattern of a transposed and stretched periodic slab is periodic vertically. Odd hori-

zontals drawn to complete the picture necessarily have the same vertical periodicity. Thus

we have

Periodicity corollary. A vertical slab of width 2n at the left edge of G is periodic in j with

period 2n+2.

Could a horizontal or vertical slab with origin (0,0) and thickness 2n have a period shorter

than 2n+1 or 2n+2 respectively? The answer is no, witness (17) and (18).

5. Ruler ticks

Sloane called attention to a “ruler-tick” pattern of facets along the bottom edge of G; see

Figure 5. The height of the tick preceding an odd vertical is 1. The height of the tick pre-

ceding a positive even vertical 2i is d(i) + 1, where d(i) is the largest power of 2 that is a

divisor of i. This sequence is given in [OEIS, A330569]. An alternate characterization is
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Figure 5. Ruler-tick facets along the bottom edge of G.

that a ruler tick of height 2n + 1 occupies the right end of a period of slab Sn.

In Section it was shown that the final segment on every horizontal in block Bn is a gap.

On even horizontals, where gaps come in pairs, the previous segment is also a gap. Thus,

when the odd vertical 2n+1 − 1 is drawn it encounters no horizontal bars in slab Sn and

forms a continuous left side for a facet of height 2n + 1. The right side of the facet, verti-

cal 2n+1, is also continuous per (18).

Ticks are capped at height 2n + 1.

h(2n+1 − 1, 2n + 1)
(4)=

2n+1−1

i=0
Σ v(i, 2n + 1)

(14)=
2n+1−1

i=0
Σ v(i, 2n)

(27)= 1

6. Facet shapes and families

The sequence, R, of increasing ruler-facet heights, where

R = R0, R1,
. . . , Rk,

. . . = 1, 2, . . . , 2k−1 + 1, . . . , k ≥ 1

plays a pervasive role in facet dimensions. A complete survey of G15 reveals that every

facet dimension is Rk or 2Rk for some k. Each facet falls into one of the following shape

classes. In each class the horizontal dimension is given first.

1 × Rk , 2 × Rk , Rk × 1, Rk × 2, Rk × Rk , Rk × 2Rk ,

Rk+1 × 2Rk , Rk × Rk+1, 2Rk × Rk+2

(29)

The classification is unambiguous except for some facets with a side of length 2 or less

that is not a member of a family.

Shape classes are embodied in families of facets, successive members of which appear in

similar positions in successive gaskets Gn indexed by n. Successive sizes are indexed by

k within the class. The “similar positions” are witnessed by a seed location (x, y) such

that the mth member of the family counted from 0 contains (2m x, 2m y).

In Figure 2 solid circles mark a family of Rk × 2Rk facets at power-of-two multiples of

the seed (6.5,2); open circles mark a family of Rk × Rk facets. For clarity, the chosen

seeds have non-integer coordinates interior to facets. However there exist grid points on

the respective facet boundaries that also function as seeds: (7,2) and (3,4).

A family does not necessarily begin with the smallest possible member of its shape class.

The largest facet in Figure 2 is a 5 × 6 rectangle of class Rk+1 × 2Rk . the family continues

to larger sizes, but begins with the next smaller size, a 3 × 4 (R2 × 2R1). This family has
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no 2 × 2 (R1 × 2R0) member; a 2 × 3 facet sits where that would be expected. The survey

revealed no family of this class that does have a 2 × 2 member.

More shape classes might appear beyond the limits of the survey, but that eventuality

would surprise me. Every class in (29) is represented in G6; no further classes are repre-

sented in G15.

6.1. Family growth

Figure 6 illustrates how magnification and weaving constructs a typical member of a facet

family from its predecessor. The lengths of the facet’s edges are odd or even according as

they take the form Rk or 2Rk in (29). A coordinate that varies along an odd-length edge

has an odd value at one end and even at the other, ordered consistently in successive

members. A coordinate that varies along an even-length edge has an odd value at both

ends.

O E

O

O
3

4

6

E E

E

E

8

O E

6

O

5
O

O

(a) (b) (c) (d)

Figure 6. Construction of a facet-family member. (a) Member (3 × 4) of a

family of Rk+1 × 2Rk facets. (b) Image of (a) doubled per (1) and (3). (c)

Same as (b) with odd verticals drawn. (d) Same as (c) with odd horizontals

drawn to make the next facet (5 × 6) in the family. Certain even and odd ver-

ticals and horizontals are labeled E and O respectively.

In the magnified image of the predecessor, all edges have even coordinates. Weaving odd

verticals slices off one unit along each edge that is an image of an odd vertical. Then

weaving odd horizontals slices off one unit along each edge that is an image of an odd

horizontal. Other odd horizontals have gaps in the new facet and ‘‘ladder rung’’ bars

within each vertical slice.

In every facet family a ladder of as many rungs as will fit flanks at least one vertical side

of all but the first member of the family.

7. Local symmetry

G exhibits fractal behavior, of which facet families are one manifestation. Another,

shown in Figure 7, is trains of similar rectangular areas with like local symmetry. Succes-

sive elements of a train double in size and location relative to the origin. Symmetries as-

sociated with the indicated trains are listed in Table 2.

Trains may overlap. In Figure 7 trains 1 and 2 are nested. Trains 4 and 5 together make a

train with symmetry about a horizontal axis.

Train 2 arises from periodicity. Duplicate trains necessarily begin at successive periods,

making an infinite spray (in the horticultural sense) of such trains. Periodicity similarly



-12-

1

2

3

4

5

6

Figure 7. Fractal behavior in G7. Rectangle of consistent symmetry type are

indicated by trains of rectangles spanned by X’s. The train number is shown

in the largest member of each train; trains are shown in color where avail-

able. Symmetry does not always attain on rectangle boundaries.

produces sprays for all trains, not just train 1.

Rectangles of train 1 have further fractal properties. Two copies of each rectangle make

up the right half of its successor. Thus branches of the spray bifurcate at each doubling in

size. Another bifurcating sub-pattern, seen to the left of the large central rectangle in both

train 1 and train 6, becomes more vivid in further train members. A similar motif appears

in other trains, too.

Each member of train 6 can be extended 1/2 its width to the left to make a train with sym-

metry about a horizontal axis, or 1/4 its height at top and bottom to make a train with

symmetry about a vertical axis.
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Table 2. Symmetry types of trains marked in Figure 7. Dimensions of a train

member are given in terms of the least i for which Gi contains the member.

Axis of symmetry

Horizontal Vertical
Train Width Height

Central

Symmetry

1 (large blue) 2i−2 2i−1 ✓

2 (small blue) 2i−3 2i−2 ✓

3 (black) 2i−2 2i−2 ✓

4 (upper green) 2i−2 2i−2 ✓

5 (lower green) 2i−2 2i−2 ✓

6 (purple) 2i−3 2i−2 ✓ ✓ ✓

We now examine trains of one symmetry class in more detail. Much of the analysis in-

volves the mid-line of a rectangle. If the mid-line does not lie on a horizontal, doubling

places the mid-line of the successor rectangle on a horizontal. If a mid-line lies on an odd

horizontal, doubling places the successor mid-line on an even horizontal. All mid-lines

thereafter lie on even horizontals. An even-horizontal mid-line can contain no bars, for

the switch of parity on an odd vertical that encountered the bar would destroy symmetry.

When constructing the successor of a rectangle in a train symmetrical about a bar-free

horizontal, doubling preserves symmetry. Then weaving odd verticals preserves symme-

try. To preserve symmetry in the final step of weaving odd horizontals, each pair of hori-

zontals placed symmetrically about the mid-line must “start off on the same foot” within

the rectangle. I do not know why this last property holds for most trains in Figure 7. For

the blue-marked rectangles, however, the property follows from the fact that every hori-

zontal crosses a ruler tick; see Section 5. This synchronizes the gaps in each symmetric

pair of of odd horizontals.

Thus the existence of infinite trains is attested by train 1 and its spray.

7.1. Color symmetry

Color symmetries map attribute values—in the present case values of v and h—as well as

positions. A train with a kind of color symmetry originates on a vertical centerline at

i = 6 on the bottom edge of G. The centerline of the mth member of the train, where

m ≥ 0, occurs at i = 6 ⋅ 2m; its height is 2m+3. Horizontal segments incident on a center-

line are centrally symmetric about the point (6 ⋅ 2m, 2m+2).

h(6 ⋅ 2m − 1, j) = h(6 ⋅ 2m, 2m+3 − j) (30)

Verticals that weave across these segments have central color symmetry; bars map to gaps

and vice versa, as illustrated in Figure 8.

v(6 ⋅ 2m − 1, j) = v(6 ⋅ 2m + 1, 2m+3 − j − 1) + 1 (31)

According to (1), magnified images of these verticals occur at i = 6 ⋅ 2m+1 ± 2. They retain

central color symmetry. Repeated magnification flanks each centerline with exponentially

spaced color-symmetric companions.

v(6 ⋅ 2m − 2k , j) = v(6 ⋅ 2m + 2k , 2m+3 − j − 1) + 1, 0 ≤ k ≤ m
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Another color-symmetric train can be obtained by the transpose-and-stretch transforma-

tion. Partial trains contained in a particular slab can be transformed by translations appro-

priate to that slab per the periodicity theorem. Thus the color-symmetric pattern at 6 re-

curs with period 8, at 14, 22, 30, ...

6 12 24 48
Figure 8. Labeled verticals are midlines of members of a train of groups of color-sym-

metric vertical segments. Heavy bars (drawn in red if color is available) on one vertical

correspond to gaps indicated by heavy dotted lines (blue) on a mated vertical read in the

opposite direction. Color-symmetric verticals centered at 48 are truncated at just over half

their actual height.

8. What next?

The grail of https://oeis.org/A328080 remains elusive: a formula for the number of facets

in Gn. Another desideratum is formulas for v(i, j) and h(i, j), very likely in terms of the

bits of the binary representation of i and j. A solution to the latter problem could well

serve as a stepping-stone to the former.

One also hopes that less tedious proofs can be found, especially for Section 4. The formu-

lation in Section 3.1 is tantalizing. Can Hn be shown to be the left half of Gn more di-

rectly, without the algebra of Section 3?

The observations of Sections 6 and 7 suggest further questions. Is the inventory of shape

classes complete? Are all facet families infinite? How do rectangular patches of symme-

try arise? Why do they form trains? What aspect ratios can they hav e? Do color-symmet-

ric trains unrelated to those described in Section 7.1 exist?
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