Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A333093
a(n) is equal to the n-th order Taylor polynomial (centered at 0) of c(x)^n evaluated at x = 1, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. of the Catalan numbers A000108.
14
1, 2, 8, 41, 232, 1377, 8399, 52138, 327656, 2077934, 13270633, 85226594, 549837391, 3560702069, 23132584742, 150695482041, 984021596136, 6438849555963, 42208999230224, 277144740254566, 1822379123910857, 11998811140766701, 79095365076843134
OFFSET
0,2
COMMENTS
The sequence satisfies the Gauss congruences: a(n*p^k) == a(n*p^(k-1)) ( mod p^k ) for all prime p and positive integers n and k.
We conjecture that the sequence satisfies the stronger supercongruences a(n*p^k) == a(n*p^(k-1)) ( mod p^(3*k) ) for prime p >= 5 and positive integers n and k. Examples of these congruences are given below.
More generally, for each integer m, we conjecture that the sequence
{a_m(n) : n >= 0}, defined by setting a_m(n) = the n-th order Taylor polynomial of c(x)^(m*n) evaluated at x = 1, satisfies the same supercongruences. For cases, see A099837 (m = -2), A100219 (m = -1), A000012 (m = 0), A333094 (m = 2), A333095 (m = 3), A333096 (m = 4), A333097 (m = 5).
FORMULA
a(n) = Sum_{k = 0..n} n/(n+k)*binomial(n+2*k-1,k) for n >= 1.
a(n) = [x^n] ( (1 + x)*c(x/(1 + x)) )^n = [x^n] ( (1 + x)*(1 + x*M(x)) )^n, where M(x) = ( 1 - x - sqrt(1 - 2*x - 3*x^2) ) / (2*x^2) is the o.g.f. of the Motzkin numbers A001006.
O.g.f.: ( 1 + x*f'(x)/f(x) )/( 1 - x*f(x) ), where f(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + ... = (1/x)*Revert( x/c(x) ) is the o.g.f. of A001764.
Row sums of the Riordan array ( 1 + x*f'(x)/f(x), x*f(x) ) belonging to the Hitting time subgroup of the Riordan group.
a(n) ~ 3^(3*n + 3/2) / (7 * sqrt(Pi*n) * 2^(2*n+1)). - Vaclav Kotesovec, Mar 28 2020
a(n) = Sum_{k = 0..n} n/(n+2*k)*binomial(n+2*k, k) for n >= 1. - Peter Bala, Apr 20 2024
EXAMPLE
n-th order Taylor polynomial of c(x)^n:
n = 0: c(x)^0 = 1 + O(x)
n = 1: c(x)^1 = 1 + x + O(x^2)
n = 2: c(x)^2 = 1 + 2*x + 5*x^2 + O(x^3)
n = 3: c(x)^3 = 1 + 3*x + 9*x^2 + 28*x^3 + O(x^4)
n = 4: c(x)^4 = 1 + 4*x + 14*x^2 + 48*x^3 + 165*x^4 + O(x^5)
Setting x = 1 gives a(0) = 1, a(1) = 1 + 1 = 2, a(2) = 1 + 2 + 5 = 8, a(3) = 1 + 3 + 9 + 28 = 41 and a(4) = 1 + 4 + 14 + 48 + 165 = 232.
The triangle of coefficients of the n-th order Taylor polynomial of c(x)^n, n >= 0, in descending powers of x begins
row sums
n = 0 | 1 1
n = 1 | 1 1 2
n = 2 | 5 2 1 8
n = 3 | 28 9 3 1 41
n = 4 | 165 48 14 4 1 232
...
This is a Riordan array belonging to the Hitting time subgroup of the Riordan group. The first column sequence [1, 1, 5, 28, 165, ...] = [x^n] c(x)^n = A025174(n).
Examples of supercongruences:
a(13) - a(1) = 3560702069 - 2 = (3^2)*(13^3)*31*37*157 == 0 ( mod 13^3 ).
a(3*7) - a(3) = 11998811140766701 - 41 = (2^2)*5*(7^4)*32213*7756841 == 0 ( mod 7^3 ).
a(5^2) - a(5) = 22794614296746579502 - 1377 = (5^6)*7*53*6491*605796421 == 0 ( mod 5^6 ).
MAPLE
seq(add(n/(n+k)*binomial(n+2*k-1, k), k = 0..n), n = 1..25);
#alternative program
c:= x -> (1/2)*(1-sqrt(1-4*x))/x:
G := (x, n) -> series(c(x)^n, x, 51):
seq(add(coeff(G(x, n), x, k), k = 0..n), n = 0..25);
MATHEMATICA
Table[SeriesCoefficient[((1 + x)^2 * (1 - Sqrt[(1 - 3*x)/(1 + x)]) / (2*x))^n, {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Mar 28 2020 *)
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Mar 07 2020
STATUS
approved