Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A334527
Numbers that are both Niven numbers and Smith numbers.
4
4, 27, 378, 576, 588, 645, 648, 666, 690, 825, 915, 1872, 1908, 1962, 2265, 2286, 2484, 2556, 2688, 2934, 2970, 3168, 3258, 3294, 3345, 3366, 3390, 3564, 3615, 3690, 3852, 3864, 3930, 4428, 4464, 4557, 4880, 5526, 6084, 6315, 7695, 8154, 8736, 8883, 9015, 9036
OFFSET
1,1
COMMENTS
McDaniel (1990) proved that there exist infinitely many numbers which are both base-b Niven numbers and base-b Smith numbers, for all bases b >= 8.
LINKS
Wayne L. McDaniel, On the Intersection of the Sets of Base b Smith Numbers and Niven Numbers, Missouri Journal of Mathematical Sciences, Vol. 2, No. 3 (1990), pp. 132-136.
EXAMPLE
27 is a term since it is a Niven number (2 + 7 = 9 is a divisor of 27) and a Smith number (27 = 3 * 3 * 3 and 2 + 7 = 3 + 3 + 3).
MATHEMATICA
digSum[n_] := Plus @@ IntegerDigits[n]; nivenSmithQ[n_] := Divisible[n, (ds = digSum[n])] && CompositeQ[n] && Plus @@ (Last@# * digSum[First@#] & /@ FactorInteger[n]) == ds; Select[Range[10^4], nivenSmithQ]
PROG
(Python)
from sympy import factorint
def sd(n): return sum(map(int, str(n)))
def ok(n):
sdn = sd(n)
if sdn == 0 or n%sdn != 0: return False # not Niven
f = factorint(n)
return sum(f[p] for p in f) > 1 and sdn == sum(sd(p)*f[p] for p in f)
print(list(filter(ok, range(9999)))) # Michael S. Branicky, Apr 27 2021
CROSSREFS
Intersection of A005349 and A006753.
Sequence in context: A320961 A239726 A058155 * A104169 A359904 A271615
KEYWORD
nonn,base
AUTHOR
Amiram Eldar, May 05 2020
STATUS
approved