Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A334808
Consider all the Pythagorean triangles with perimeter A010814(n). Then a(n) is the sum of the areas of the squares on all of their sides.
0
50, 200, 338, 450, 578, 800, 1250, 2602, 1682, 1800, 2312, 5188, 6404, 3200, 4050, 5000, 15610, 5618, 13492, 6728, 15650, 8450, 8450, 8450, 9248, 32002, 10658, 36866, 14450, 12800, 14450, 14450, 14450, 15842, 31700, 16200, 20402, 20000, 18050, 18818, 87978, 69164
OFFSET
1,1
FORMULA
a(n) = 2 * Sum_{k=1..floor(c(n)/3)} Sum_{i=k..floor((c(n)-k)/2)} sign(floor((i+k)/(c(n)-i-k+1))) * [i^2 + k^2 = (c(n)-i-k)^2] * (c(n)-i-k)^2, where c = A010814. - Wesley Ivan Hurt, May 13 2020
EXAMPLE
a(1) = 50; there is one Pythagorean triangle with perimeter A010814(1) = 12, [3,4,5]. The sum of the areas of the squares on its sides is 3^2 + 4^2 + 5^2 = 9 + 16 + 25 = 50.
a(2) = 200; there is one Pythagorean triangle with perimeter A010814(2) = 24, [6,8,10]. The sum of the areas of the squares on its sides is 6^2 + 8^2 + 10^2 = 36 + 64 + 100 = 200.
CROSSREFS
Cf. A010814.
Sequence in context: A031692 A173141 A115592 * A273293 A097371 A179755
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, May 12 2020
STATUS
approved