Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Number of separable multisets of size n covering an initial interval of positive integers.
13

%I #24 Apr 08 2021 07:25:45

%S 1,1,1,3,5,13,24,56,108,236,464,976,1936,3984,7936,16128,32192,64960,

%T 129792,260864,521472,1045760,2091008,4188160,8375296,16763904,

%U 33525760,67080192,134156288,268374016,536739840,1073610752,2147205120,4294688768,8589344768,17179279360,34358493184

%N Number of separable multisets of size n covering an initial interval of positive integers.

%C A multiset is separable if it has a permutation that is an anti-run, meaning there are no adjacent equal parts.

%C Alternatively, a multiset is separable if its greatest multiplicity is greater than the sum of its remaining multiplicities plus one. Hence a(n) is the number of compositions of n whose greatest part is at most one more than the sum of its other parts. For example, the a(1) = 1 through a(5) = 13 compositions are:

%C (1) (11) (12) (22) (23)

%C (21) (112) (32)

%C (111) (121) (113)

%C (211) (122)

%C (1111) (131)

%C (212)

%C (221)

%C (311)

%C (1112)

%C (1121)

%C (1211)

%C (2111)

%C (11111)

%H Michael De Vlieger, <a href="/A336103/b336103.txt">Table of n, a(n) for n = 0..3322</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (2,4,-8,-4,8).

%F a(n) = 2^(n-1) - (floor(n/2)+1) * 2^(floor(n/2)-2) for n >= 2. - _David A. Corneth_, Jul 09 2020

%F From _Chai Wah Wu_, Apr 07 2021: (Start)

%F a(n) = 2*a(n-1) + 4*a(n-2) - 8*a(n-3) - 4*a(n-4) + 8*a(n-5) for n > 6.

%F G.f.: (x - 1)*(2*x^5 + 7*x^4 - 5*x^2 + 1)/((2*x - 1)*(2*x^2 - 1)^2). (End)

%e The a(1) = 1 through a(5) = 13 separable multisets:

%e {1} {1,2} {1,1,2} {1,1,2,2} {1,1,1,2,2}

%e {1,2,2} {1,1,2,3} {1,1,1,2,3}

%e {1,2,3} {1,2,2,3} {1,1,2,2,2}

%e {1,2,3,3} {1,1,2,2,3}

%e {1,2,3,4} {1,1,2,3,3}

%e {1,1,2,3,4}

%e {1,2,2,2,3}

%e {1,2,2,3,3}

%e {1,2,2,3,4}

%e {1,2,3,3,3}

%e {1,2,3,3,4}

%e {1,2,3,4,4}

%e {1,2,3,4,5}

%t allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];

%t sepQ[m_]:=Select[Permutations[m],!MatchQ[#,{___,x_,x_,___}]&]!={};

%t Table[Length[Select[allnorm[n],sepQ]],{n,0,5}]

%t (* or *)

%t Table[Length[Join@@Permutations/@Select[IntegerPartitions[n],With[{mx=Max@@#},mx<=1+Total[DeleteCases[#,mx,{1},1]]]&]],{n,0,15}] (* or *)

%t CoefficientList[Series[(x - 1) (2 x^5 + 7 x^4 - 5 x^2 + 1)/((2 x - 1) (2 x^2 - 1)^2), {x, 0, 36}], x] (* _Michael De Vlieger_, Apr 07 2021 *)

%Y The inseparable version is A336102.

%Y The strong (weakly decreasing multiplicities) case is A336106.

%Y Sequences covering an initial interval are A000670.

%Y Anti-run compositions are A003242.

%Y Anti-run patterns are A005649.

%Y Separable partitions are A325534.

%Y Inseparable partitions are A325535.

%Y Inseparable factorizations are A333487.

%Y Anti-run compositions are ranked by A333489.

%Y Heinz numbers of inseparable partitions are A335448.

%Y Cf. A001792, A019472, A025065, A049610, A052841, A106351, A269134, A292884, A335126, A335433, A335452.

%K nonn,easy

%O 0,4

%A _Gus Wiseman_, Jul 09 2020

%E a(26)-a(36) from _David A. Corneth_, Jul 09 2020