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1 Introduction

The counting of the number of interlacing triangles is a classic example of an enumeration
problem. These combinatorial objects are generalizations of shifted standard Young tableaux
of shape (n, n − 1, . . . , 1) in so far as, we relax the condition on being strictly increasing in
rows and columns, and replace it with an interlacing condition. In this work we layout a
construction which reduces the problem to counting the linear extensions of a collection of
posets.

2 Background

Definition 2.1. An interlacing triangle of rank n is a triangular array of the integers
1, . . . ,

(
n+1
2

)
such that there are n numbers in the first row, n − 1 numbers in the second

row, and so on, subject to the following condition:
If a(i, j) denotes the j-th number in the i-th row then either

a(i− 1, j + 1) < a(i, j) < a(i− 1, j) or a(i− 1, j) < a(i, j) < a(i− 1, j + 1)

for 1 < i ≤ n and 1 ≤ j ≤ n− i+ 1

In this work, we wish to enumerate all interlacing triangles of a given rank. For the
remainder of this paper, we let Tn = {interlacing triangles of rank n} and

tn = #{interlacing triangles of rank n}

.
Ex 2.1: For n = 2, we have the following interlacing triangles of rank 2:

2
1 3

2
3 1

.
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So we have t2 = 2.
Ex 2.2: For n = 3, we have the following interlacing triangles of rank 3:

3
5 2

6 4 1

4
5 2

6 3 1

4
5 2

3 6 1

3
5 2

4 6 1

4
5 3

2 6 1

4
5 3

1 6 2

3
4 2

5 1 6

3
4 2

6 1 5

3
5 2

6 1 4

4
5 2

6 1 3

3
2 5

1 4 6

4
2 5

1 3 6

4
2 5

1 6 3

3
2 5

1 6 4

4
3 5

1 6 2

4
3 5

2 6 1

3
2 4

6 1 5

3
2 4

5 1 6

3
2 5

4 1 6

4
2 5

3 1 6
.

So we have t3 = 20. Note that each interlacing triangle in the bottom three rows is a
reflection of an interleaving triangle in the top three rows over the vertical axis of symmetry.

We now recall some basic definitions from the theory of posets, all of which can be found
in [3].

Definition 2.2. A partially ordered set or poset is a set P together with a binary relation
that is reflexive, antisymmetric, and transitive, denoted ≤P or ≤ if the context is clear. We
denote the poset and its binary relation as the pair (P,≤)

A poset is said to be finite if the underlying set P is a finite set. The posets that are of
interest to us are on

(
n+1
2

)
elements for some n.

Definition 2.3. A linear extension of a poset (P,≤) is an order preserving bijection
σ : P −→ [|P |] where [|P |] is given the natural ordering. Let L (P ) be the set of linear
extensions on P . Let `(P ) be the number of linear extensions on P .

In general, there is no formula for counting linear extensions of a given poset. See [1] for
more details on the computational complexity of counting linear extensions. However, there
are certain classes of posets which do yield closed formulas for the number of linear extensions.
Recent work, by Hopkins [2] elaborates on the connection between product formulas for `(P )
and properties of the poset’s dynamical behavior with respect to promotion and rowmotion.
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3 Poset Construction

In this section we lay out a decomposition of {interlacing triangles of rank n} into equiv-
alence classes corresponding to certain posets on

(
n+1
2

)
elements. To begin, we consider a

triangular array of dots corresponding to positions (i, j) in a generic interleaving triangle.

Now, associate the set A(n) =
(n
2)⊕

i=1

Z/2Z to the triangular array, in such a way that the first

n− 1 summands are aligned with the second row of the array and the next n− 2 summands
are aligned with the third row of the array, and so on. This reindexes the summands in
A(n). For example, if n = 4, we have the triangular array:

•
• •

• • •
• • • • ,

and the associated set, A(4) is represented below,

Z/2Z
Z/2Z Z/2Z

Z/2Z Z/2Z Z/2Z .

An element x ∈ A(n) is given by a triangular array of
(
n
2

)
0’s or 1’s. For example,

0
1 0

1 0 1
∈

Z/2Z
Z/2Z Z/2Z

Z/2Z Z/2Z Z/2Z .

Finally, define

B(n) = {x ∈ A(n) : if x(i, j) = 1 and x(i− 1, j) = x(i− 1, j + 1)

then x(i− 1, j) = x(i− 1, j + 1) 6= 0 and

if x(i, j) = 0 and x(i− 1, j) = x(i− 1, j + 1)

then x(i− 1, j) = x(i− 1, j + 1) 6= 1}

The elements of B(n) are triangular arrays of 0’s and 1’s which avoid the following patterns:

0
1 1

1
0 0

.

We refer to such configurations as a (0, 1)-configuration. Its position is defined by the location
of the top entry. To illustrate the elements of B(n) we note that

0
1 0

1 0 1
∈ B(4),
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but
0

1 0
0 0 1

6∈ B(4).

because there is a (0, 1)-configuration in position (3, 1). Recall that we justify the summands,
Z/2Z, with respect to the triangular array of dots, starting with the second row.

Now construct a directed graph, Gx for some x ∈ A(n) according to the following rules:

1. For all positions (i, j) such that x(i, j) = 0 for 2 ≤ i < n and 1 ≤ j ≤ n− i+ 1 in the
triangular array, connect an edge (i, j) −→ (i− 1, j + 1) and (i, j)←− (i− 1, j).

2. For all positions (i, j) such that x(i, j) = 1 for 2 ≤ i < n and 1 ≤ j ≤ n− i+ 1 in the
triangular array, connect an edge (i, j) −→ (i− 1, j) and (i, j)←− (i− 1, j + 1).

Note that Gx is simple. Furthermore, for every edge connecting position (i, j) to a position
in row i − 1, we have an edge leaving (i, j) going to a position in row i − 1 with index
(i− 1, j + 1) or (i− 1, j) depending on whether x has a 0 or a 1 in position (i, j).
Ex 3.1: Consider

x =
0

1 0
1 0 1

∈ B(n),

which gives the corresponding directed graph Gx

•

••

• • •

• • • •

We now present the following Lemma followed by a Proposition.

Lemma 3.1. Gx has a cycle of length four if and only if x has a (0, 1)-configuration.

Proof. Suppose Gx has a cycle of length four. There exists a position in Gx such that:

•

••

• or

•

••

•

then by the construction of Gx, there is a (0, 1)-configuration in x:

0
1 1

1
0 0

.
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Now suppose (i, j) is a (0, 1)-configuration in x. We can assume the (0, 1)-configuration
is the following

0
1 1

since an analogous argument works for the other type of (0, 1)-configuration. So by the
construction of Gx, we have:

•

••

• •• ,

which contains a cycle of length four.

Proposition 3.1. x ∈ B(n) if and only if Gx is acyclic.

Proof. Assume that there exists a cycle and without loss of generality, it is oriented clockwise.
There must be a sequence of consecutive edges SE, SW, and NW, with the possibility of
multiple SW edges between the SE and NW edges. So we have following:

•

•

•

. .
.

•

•

•

•

Consider the position above the point where the SW edge turns NW. Call this position w.
If w corresponds to a 0 in x then we have a cycle of four vertices and so there exists a
(0, 1)-configuration. If not, then we have another cycle which passes through w.

•

•

•

. .
.

•

•

•

•
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Repeat this process, until we get a sequence SE, SW, NW.

•

••

•

By the construction of Gx, there exists a NE edge, completing a cycle of length four, and so
there exists a (0, 1)-configuration in x and therefore x 6∈ B(n).

Now suppose Gx is a directed acyclic graph constructed as above. Assume for contra-
diction that x ∈ A(n) \ B(n). Then there exists a (0, 1)-configuration which by Lemma 3.1
implies that there exists a cycle of length four in Gx. Therefore Gx is not acyclic.

To any directed acyclic graph, G, we can associate a poset (P,≤P ) as follows:

1. Let the underlying set of P be the vertex set of G.

2. For any two vertices u and v in the vertex set of G, we say u ≤P v if there exists
a sequence (possibly empty) of arrows in G that can be traversed starting at u and
ending at v.

Clearly, ≤P is transitive, reflexive, and antisymmetric (the last of which follows from G
being acyclic). For x ∈ B(n) associate the poset (Px,≤x) by first constructing Gx and then
associating the poset Px to it via the assignment above.
Ex 3.2 Let

x =
0

1 0
1 1 0

∈ B(4)

which gives the following directed acyclic graph:

•

••

• • •

• • • • .

We then label the vertices according to their positions and construct the Hasse diagram for
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Px below:

(1, 4)

(2, 3)

(3, 2)

(4, 1)

(3, 1)

(2, 1)

(1, 2)

(1, 1)

(2, 2)

(1, 3)

We have the following natural definition:

Definition 3.1. Let x ∈ B(n). An interlacing triangle of rank n, call it a, is oriented with
respect to x if for all positions (i, j) we have the following:

1. if x(i, j) = 0 then a(i− 1, j) < a(i, j) < a(i− 1, j + 1)

2. if x(i, j) = 1 then a(i− 1, j + 1) < a(i, j) < a(i− 1, j).

Furthermore, let Tn(x) be the set of all interlacing triangles of rank n oriented with respect
to x.

Proposition 3.2. For all x ∈ B(n) there exists a bijection:

φx : L (Px) −→ Tn(x).

Moreover, {Tn(x)}x∈B(n) is a set partition of Tn.

Proof. Let σ be a linear extension of Px for a fixed x ∈ B(n). Since σ preserves the ordering
on Px, then it induces a graph labelling on Gx such that any traversal on Gx is increasing
with respect to the labelling. We can then omit the arrows to yield an interlacing triangle
of rank n which is oriented with respect to x. Now let a ∈ Tn(x). We add arrows to a
which connect diagonally adjacent positions, pointing in the direction of increasing value.
This constitutes a labelling on Gx and by construction is a linear extension on Px.

To show the second statement, we first prove that Tn(x)∩Tn(y) = ∅ for all x 6= y ∈ B(n).
Suppose a ∈ Tn(x) ∩ Tn(y) for x 6= y ∈ B(n). Since x 6= y there exists a position (i, j)
such that x(i, j) = 0 and y(i, j) = 1. This implies a(i, j) < a(i − 1, j) since a ∈ Tn(x) and
a(i, j) > a(i−1, j) since a ∈ Tn(y) which is a contradiction. We now show,

⋃
x∈B(n)

Tn(x) = Tn.
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To see this, let a ∈ Tn and connect the diagonally adjacent entries in a with edges that
point in the direction of increasing value. Now ignore the labelling of this directed graph
and observe that it is acyclic. Note that a ∈ Tn exhibits an orientation x ∈ B(n) defined as
follows:

1. Let x(i, j) = 0 if (i, j) −→ (i− 1, j + 1) and (i, j)←− (i− 1, j),

2. Let x(i, j) = 1 if (i, j) −→ (i− 1, j) and (i, j)←− (i− 1, j + 1).

Therefore a ∈ Tn(x) for some x ∈ B(n). Finally, let a ∈ Tn(x) for some x ∈ B(n). This says
that a is an interlacing triangle of rank n oriented with respect to x and therefore a ∈ Tn.

We are now ready to state the main result of this section.

Theorem 3.1. For all n ∈ N \ {1} we have,

tn =
∑

x∈B(n)

`(Px)

Proof. This follows immediately from Proposition 3.2.
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