Notes on the period polynomial for the cubic Gaussian periods

Peter Bala, Nov 2021

A cubic field K is called a cyclic cubic field if it contains all three roots of its generating polynomial $f(x)$. The Galois group of K over $\mathbb Q$ is cyclic of order 3. Shanks [4] studied a 1-parameter family of cyclic cubic fields K_a , defined as the splitting field of the polynomial $x^3 - ax^2 - (a+3)x - 1$, $a \in \mathbb{Z}$. Shank's cubic has polynomial discriminant $(a^2 + 3a + 9)^2$. In the case when $p = a^2 + 3a + 9$ is prime (so necessarily $p \equiv 1(3)$) Shank's cubic is easily seen to be an integer translation of the period polynomial of the classical cubic Gaussian periods of modulus p (see, for example, [3]). The purpose of this note is to extend this result to all primes $p \equiv 1(3)$ by suitably generalising Shanks' cubic.

- -

Let $p \equiv 1(3)$ be prime. A result of Gauss says that there are integers L and M, unique up to sign, such that $4p = L^2 + 27M^2$ [1, Prop. 8.3.2]. We fix the values of L and M by choosing the positive value of M and requiring $L \equiv 1(3)$. Clearly, L and M have the same parity. Hence $L - 3M$ is even. We set $L = 2a + 3M$. It follows from our choice of L that the integer $a \equiv 2(3)$. The prime p is given in terms of a and M by

$$
p = a^2 + 3aM + 9M^2.
$$

For primes of this type see [A005471](https://oeis.org/A005471) ($M = 1$), [A227622](https://oeis.org/A227622) ($M = 2$) and [A349461](https://oeis.org/A349461) $(M = 3)$.

Prime $p \equiv 1(3)$		ΛИ	α	Prime $p \equiv 1(3)$		IИ	\boldsymbol{a}
			$\overline{}$			3	
13	-5		-4	67	-5	3	-
19	17		റ	73	17	3	$\qquad \qquad$
31	4	2	\sim	79	-17		-10
37	-11		$\overline{ }$. .	97	19		8
43	-8	2	$\overline{ }$	$103\,$	13	3	$\overline{2}$

Table: Values of L, M and a for $7 \le p \le 103$

We define the generalised Shanks cubic polynomial for the prime $p =$ $a^2 + 3aM + 9M^2$ to be the polynomial

$$
S(x) \equiv S(a, M, x) = x^3 - ax^2 - M(a + 3M)x - M^3 \tag{1}
$$

with discriminant $Disc(S(x)) = p^2 M^2$. When $M = 1$, the prime p has the form $p = a^2 + 3a + 9$ and the polynomial $S(a, 1, x) = x^3 - ax^2 - (a + 3)x - 1$ is Shanks' cubic. The polynomial $S(a, M, x)$ may be reducible over \mathbb{Q} ; for example, when $M = 6a$ we find $S(a, 6a, x) = (x + 2a)(x + 9a)(x - 12a)$. However, in all cases of interest to us, the polynomial $S(a, M, x)$ will be irreducible over Q.

We shall show that the generalised Shanks' cubic $S(a, M, x)$ is the translation by an integer of the period polynomial of the three cubic Gaussian periods of modulus p . We give some relations between the cubic Gaussian periods.

Cubic Gaussian periods and the period polynomial

Let ζ_p denote a primitive pth root of unity. Let \mathbb{Z}_p denote the finite field with p elements. The group of units \mathbb{Z}_p^* , which we identify with the numbers $\{1, 2, ..., p-1\}$, has a subgroup C of index 3 consisting of the nonzero cubic residues modulo p. The **principal cubic Gaussian period** for the modulus p is defined as the sum

$$
\eta_0 = \sum_{i \in C} \zeta_p^i
$$

The other two cubic Gaussian periods are

$$
\eta_1 = \sum_{i \in C_1} \zeta_p^i \quad \text{and} \quad \eta_2 = \sum_{i \in C_2} \zeta_p^i,
$$

where C_1 and C_2 denote the cosets of C in the group \mathbb{Z}_p^* . Clearly,

$$
\eta_0 + \eta_1 + \eta_2 = -1.
$$

The three Gaussian periods η_i are the roots of the **period polynomial**

$$
P(x) = (x - \eta_0) (x - \eta_1) (x - \eta_2).
$$

The period polynomial $P(x)$ has integer coefficients and is given by [3, equation 3.1]

$$
P(x) = x3 + x2 - \frac{(p-1)}{3}x - \left(\frac{(L+3)p-1}{27}\right).
$$
 (2)

The discriminant of the period polynomial $\mathrm{Disc}(P_3(x)) = p^2M^2.$ Since the polynomials $P(x)$ and $S(x)$ have the same discriminant we might suspect that they are related by a linear transformation: indeed one easily checks that

$$
S(x) = P\left(x - \frac{a+1}{3}\right) = P\left(x - \frac{L+2-3M}{6}\right).
$$
 (3)

Since $a \equiv 2(3)$ we see that $(a + 1)/3$ is an integer. Since the cubic period polynomial is irreducible it follows that the generalised Shanks' cubic $S(x)$ associated with the prime $p = a^2 + 3aM + 9M^2$ is also irreducible.

The roots of $S(x)$

From (3), the three roots of the generalised Shanks' cubic $S(x)$ are

$$
\eta_i + \frac{a+1}{3}, \quad i = 0, 1, 2. \tag{4}
$$

We define the root s_0 of $S(x)$ by

$$
s_0 = \eta_0 + \frac{a+1}{3}.
$$

This unambiguously defines the root s_0 in terms of the principal cubic Gaussian period η_0 . Next we find a linear fractional transformation that cyclically permutes the roots of the cubic $S(x)$. One easily verifies that

$$
S\left(-\frac{M^2}{x+M}\right) = -\frac{M^3}{(x+M)^3}S(x).
$$
 (5)

Substituting $x = s_0$ into (5), we see that $s_1 := -M^2/(s_0 + M)$ is a second (distinct) root of the irreducible cubic $S(x)$ and $s_2 := -M^2/(s_1 + M)$ is the remaining root of $S(x)$. This determines the roots of $S(x)$ without ambiguity. Thus the roots s_i of the cubic $S(x)$ are cyclically permuted by the linear fractional transformation $x \to -M^2/(x+M)$ of order 3:

$$
s_1 = -\frac{M^2}{s_0 + M}, \quad s_2 = -\frac{M^2}{s_1 + M}, \quad s_0 = -\frac{M^2}{s_2 + M}, \tag{6}
$$

or equivalently

$$
s_i s_{i+1} = -M s_{i+1} - M^2, \quad i \in \{0, 1, 2\} \text{ viewed as } \mathbb{Z}/3\mathbb{Z}. \tag{7}
$$

We can now determine the periods η_1 and η_2 unambiguously by setting

$$
\eta_1 = s_1 - \frac{a+1}{3}, \quad \eta_2 = s_2 - \frac{a+1}{3}.
$$

There is also a quadratic mapping that cyclically permutes the roots of the generalised Shanks' cubic $S(x)$. One easily checks that

$$
\frac{S(x)}{M(x+M)} = \left(\frac{x^2}{M} - (a+M)\frac{x}{M} - 2M\right) - \left(\frac{-M^2}{x+M}\right). \tag{8}
$$

By succesively setting $x = s_0$, $x = s_1$ and $x = s_2$ in this identity and using (6), we arrive at the relations

$$
s_1 = \frac{s_0^2}{M} - (a+M)\frac{s_0}{M} - 2M, \quad s_2 = \frac{s_1^2}{M} - (a+M)\frac{s_1}{M} - 2M, \quad s_0 = \frac{s_2^2}{M} - (a+M)\frac{s_2}{M} - 2M.
$$
\n(9)

Thus the mapping $x \to \frac{x^2}{M}$ $rac{x^2}{M} - (a + M) \frac{x}{M}$ $\frac{1}{M} - 2M$ also cyclically permutes the roots s_i of the polynomial $S(x)$.

Period relations Substituting $s_i = \eta_i + \frac{a+1}{3}$ in (6) we find that the Gaussian cubic periods are related by the linear fractional transformation

$$
\eta_{i+1} = \frac{-\frac{(L-3M+2)}{6}\eta_i - \frac{(L+p+1)}{9}}{\eta_i + \frac{(L+3M+2)}{6}}, \quad i \in \{0, 1, 2\}
$$
\n(10)

of determinant −1 and order 3.

Therefore we have the relations for the cubic Gaussian periods

$$
\eta_i \eta_{i+1} = -\left(\frac{L-3M+2}{6}\right) \eta_i - \left(\frac{L+3M+2}{6}\right) \eta_{i+1} - \frac{(L+p+1)}{9}, \quad i \in \{0, 1, 2\}.
$$
\n(11)

The period relations corresponding to (9) are

$$
\eta_i^2 = M\eta_{i+1} + \frac{(a+3M-2)}{3}\eta_i + \frac{(2p-1+a+6M)}{9}.\tag{12}
$$

Delta cyclotomy

Let

$$
\delta_0 = \eta_0 - \eta_1, \quad \delta_1 = \eta_1 - \eta_2, \quad \delta_2 = \eta_2 - \eta_0
$$

denote the differences of the cubic Gaussian periods. In the particular case $M = 1$, Lehmer and Lehmer [2] show that the differences δ_i are the roots of the cubic $x^3 - px + p$, a simpler polynomial than the period polynomial (2). In the case of general M , it is straightforward to evaluate the elementary symmetric function in the δ_i using the above relations for the cubic periods to show that the differences δ_i are the roots of the polynomial

$$
(x - \delta_0)(x - \delta_1)(x - \delta_2) = x^3 - px + Mp
$$

with discriminant $p^2(4p - 27M^2) = p^2L^2$. The polynomial $x^3 - px + Mp$ generates a cyclic cubic field since it is irreducible by Eisenstein's criteria and has square discriminant.

Exercise 1. Show that Shanks' generalised cubic $S(a, M, x)$ factors as

$$
S(a, M, x) = \left(x - M \frac{\delta_0}{\delta_1}\right) \left(x - M \frac{\delta_1}{\delta_2}\right) \left(x - M \frac{\delta_2}{\delta_0}\right).
$$

Exercise 2. Show that the irreducible cubic $x^3 + \frac{p}{\lambda}$ $\frac{p}{M}(x+M)^2$ with discriminant equal to p^2L^2 has roots $\delta_i + \frac{\delta_i^2 - p}{M}$ $\frac{r}{M}$, $0 \leq i \leq 2$. (The polynomial $x^3 + p(x+1)^2$ has been considered by Uchida [5] in connection with a theorem about the class numbers of cyclic cubic fields.)

Exercise 3. Let

$$
\varrho_0 = \frac{s_0}{s_1}, \quad \varrho_1 = \frac{s_1}{s_2}, \quad \varrho_2 = \frac{s_2}{s_0}
$$

denote the quotients of the roots s_i of Shank's generalised cubic $S(a, M, x) =$ $x^3 - ax^2 - M(a + 3M)x - M^3$. Show that the quotients ϱ_0 , ϱ_1 and ϱ_2 are the roots of the cubic equation

$$
x^{3} + \left(\frac{p - 3M^{2}}{M^{2}}\right)x^{2} + 3x - 1 = 0
$$

with discriminant p^2L^2/M^6 .

Exercise 4. Show that the differences of the quotients $\varrho_0 - \varrho_1$, $\varrho_1 - \varrho_2$ and $\varrho_2 - \varrho_0$ are the roots of the irreducible cubic

$$
x^3 - \frac{p\left(p - 6M^2\right)}{M^4}x + \frac{Lp}{M^3}
$$

with discriminant $p^2(2p^2 - 18M^2p + 27M^4)^2/M^{12}$.

References

