Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A354795
Triangle read by rows. The matrix inverse of A354794. Equivalently, the Bell transform of cfact(n) = -(n - 1)! if n > 0 and otherwise 1/(-n)!.
6
1, 0, 1, 0, -1, 1, 0, -1, -3, 1, 0, -2, -1, -6, 1, 0, -6, 0, 5, -10, 1, 0, -24, 4, 15, 25, -15, 1, 0, -120, 28, 49, 35, 70, -21, 1, 0, -720, 188, 196, 49, 0, 154, -28, 1, 0, -5040, 1368, 944, 0, -231, -252, 294, -36, 1, 0, -40320, 11016, 5340, -820, -1365, -987, -1050, 510, -45, 1
OFFSET
0,9
COMMENTS
The triangle is the matrix inverse of the Bell transform of n^n (A354794).
The numbers (-1)^(n-k)*T(n, k) are known as the Lehmer-Comtet numbers of 1st kind (A008296).
The function cfact is the 'complementary factorial' (name is ad hoc) and written \hat{!} in TeX mathmode. 1/(cfact(-n) * cfact(n)) = signum(-n) * n for n != 0. It is related to the Roman factorial (A159333). The Bell transform of the factorial are the Stirling cycle numbers (A132393).
REFERENCES
Louis Comtet, Advanced Combinatorics. Reidel, Dordrecht, 1974, p. 139-140.
LINKS
D. H. Lehmer, Numbers Associated with Stirling Numbers and x^x, Rocky Mountain J. Math., 15(2) 1985, pp. 461-475.
Peter Luschny, The Bell transform
FORMULA
T(n, k) = n!*[t^k][x^n] (1 - x)^(t*(x - 1)).
T(n, k) = Sum_{j=k..n} (-1)^(n-k)*binomial(j, k)*k^(j-k)*Stirling1(n, j).
T(n, k) = Bell_{n, k}(a), where Bell_{n, k} is the partial Bell polynomial evaluated over the sequence a = {cfact(m) | m >= 0}, (see Mathematica).
T(n, k) = (-1)^(n-k)*t(n, k) where t(n, n) = 1 and t(n, k) = (n-1)*t(n-2, k-1) - (n-1-k)*t(n-1, k) + t(n-1, k-1) for k > 0 and n > 0.
Let s(n) = (-1)^n*Sum_{k=1..n} (k-1)^(k-1)*T(n, k) for n >= 0, then s = A159075.
Sum_{k=1..n} (k + x)^(k-1)*T(n, k) = binomial(n + x - 1, n-1)*(n-1)! for n >= 1. Note that for x = k this is A354796(n, k) for 0 <= k <= n and implies in particular for x = n >= 1 the identity Sum_{k=1..n} (k + n)^(k - 1)*T(n, k) = Gamma(2*n)/n! = A006963(n+1).
E.g.f. of column k >= 0: ((1 - t) * log(1 - t))^k / ((-1)^k * k!). - Werner Schulte, Jun 14 2022
EXAMPLE
Triangle T(n, k) begins:
[0] [1]
[1] [0, 1]
[2] [0, -1, 1]
[3] [0, -1, -3, 1]
[4] [0, -2, -1, -6, 1]
[5] [0, -6, 0, 5, -10, 1]
[6] [0, -24, 4, 15, 25, -15, 1]
[7] [0, -120, 28, 49, 35, 70, -21, 1]
[8] [0, -720, 188, 196, 49, 0, 154, -28, 1]
[9] [0, -5040, 1368, 944, 0, -231, -252, 294, -36, 1]
MAPLE
# The function BellMatrix is defined in A264428.
cfact := n -> ifelse(n = 0, 1, -(n - 1)!): BellMatrix(cfact, 10);
# Alternative:
t := proc(n, k) option remember; if k < 0 or n < 0 then 0 elif k = n then 1 else (n-1)*t(n-2, k-1) - (n-1-k)*t(n-1, k) + t(n-1, k-1) fi end:
T := (n, k) -> (-1)^(n-k)*t(n, k):
seq(print(seq(T(n, k), k = 0..n)), n = 0..9);
# Using the e.g.f.:
egf := (1 - x)^(t*(x - 1)):
ser := series(egf, x, 11): coeffx := n -> coeff(ser, x, n):
row := n -> seq(n!*coeff(coeffx(n), t, k), k=0..n):
seq(print(row(n)), n = 0..9);
MATHEMATICA
cfact[n_] := If[n == 0, 1, -(n - 1)!];
R := Range[0, 10]; cf := Table[cfact[n], {n, R}];
Table[BellY[n, k, cf], {n, R}, {k, 0, n}] // Flatten
CROSSREFS
Cf. A354794 (matrix inverse), A176118 (row sums), A005727 (alternating row sums), A045406 (column 2), A347276 (column 3), A345651 (column 4), A298511 (central), A008296 (variant), A159333, A264428, A159075, A006963, A354796.
Sequence in context: A307752 A101548 A117430 * A143676 A002726 A119734
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Jun 09 2022
STATUS
approved