Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A355795
Row 2 of A355793.
4
1, 3, 33, 507, 9609, 212835, 5350785, 149961675, 4628365305, 155913036915, 5692874399025, 224034935130075, 9456933847187625, 426402330032719875, 20460268520575152225, 1041301103429870128875, 56040353252589013121625, 3180443637298592493577875, 189863589771186976073108625
OFFSET
0,2
LINKS
A. N. Stokes, Continued fraction solutions of the Riccati equation, Bull. Austral. Math. Soc. Vol. 25 (1982), 207-214.
FORMULA
O.g.f.: A(x) = ( Sum_{k >= 0} t(k+2)/t(2)*x^k )/( Sum_{k >= 0} t(k+1)/t(1)*x^k ), where t(n) = Product_{k = 1..n} 3*k-1 = A008544(n) (triple factorial numbers).
A(x)/(1 - 5*x*A(x)) = Sum_{k >= 0} t(k+2)/t(2)*x^k.
A(x) = 1/(1 + 5*x - 8*x/(1 + 8*x - 11*x/(1 + 11*x - 14*x/(1 + 14*x - ... )))) (continued fraction).
A(x) satisfies the Riccati differential equation 3*x^2*A(x)' + 5*x*A(x)^2 - (1 + 2*x)*A(x) + 1 = 0 with A(0) = 1.
Hence by Stokes, A(x) = 1/(1 - 3*x/(1 - 8*x/(1 - 6*x/(1 - 11*x/(1 - 9*x/(1 - 14*x/(1 - 12*x/(1 - ... )))))))), a continued fraction of Stieltjes type.
MAPLE
n := 2: seq(coeff(series( hypergeom([n+2/3, 1], [], 3*x)/hypergeom([n-1/3, 1], [], 3*x ), x, 21), x, k), k = 0..20);
CROSSREFS
Cf. A355793 (table).
Cf. A112936 (row 0), A355794 (row 1), A355796 (row 3), A355797 (row 4).
Sequence in context: A243251 A336539 A221147 * A291818 A209245 A092170
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Jul 21 2022
STATUS
approved