Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A374022
a(n) is the cardinality of the set containing all noninteger rationals of the form m/2^(bigomega(m) - 1) <= n.
2
0, 0, 0, 0, 1, 1, 2, 3, 3, 3, 5, 6, 7, 7, 7, 9, 11, 12, 13, 14, 14, 14, 15, 16, 18, 20, 21, 22, 24, 25, 25, 26, 27, 27, 29, 30, 31, 33, 35, 36, 36, 37, 40, 43, 43, 44, 46, 47, 48, 48, 48, 50, 50, 51, 51, 54, 55, 58, 58, 60, 61, 64, 64, 66, 68, 71, 72, 72, 74
OFFSET
1,7
FORMULA
a(n) = card{x | x = m/2^(bigomega(m)-1), x noninteger, x<=n}.
a(n) = pi_k(n * 2^(k - 1)) - pi(n) with pi_k(n) as the counting function for k-almost primes and k sufficiently large.
k needs to be at least max(1, floor(log(n/2)/(log(3)-log(2)))) and m = n * 2^(k - 1).
a(n) = A373943(n) - A000720(n).
EXAMPLE
a(5) = 1 = card{9/2}.
a(7) = 2 = card{9/2, 27/4}.
a(8) = 3 = card{9/2, 27/4, 15/2}.
a(11) = 5 = card{9/2, 27/4, 15/2, 81/8, 21/2}.
a(12) = 6 = card{9/2, 27/4, 15/2, 81/8, 21/2, 45/4}.
a(13) = 7 = card{9/2, 27/4, 15/2, 81/8, 21/2, 45/4, 25/2}.
a(16) = 9 = card{9/2, 27/4, 15/2, 81/8, 21/2, 45/4, 25/2, 243/16, 63/4}.
It appears that Pi*x_n - n/2 + sqrt(n)/2 ~ A002410(n), where x_n is the n-th term of the above vector.
The numerators of the above vector elements are A374074(n).
The denominators of the above vector elements are 2^(bigomega(A374074(n)) - 1).
MATHEMATICA
z = 100;
k[n_] := Max[1, Floor[Log[3/2, n/2]]];
m[n_] := n 2^(k[n] - 1);
PrimePiK = Table[0, Floor[Log[2, m[z]]], m[z]];
For[i = 2, i <= m[z], i++, PrimePiK[[PrimeOmega[i], i]] = 1]
PrimePiK = Accumulate /@ PrimePiK;
a = Table[PrimePiK[[k[n], m[n]]] - PrimePi[n], {n, z}] (*sequence*)
x = Union@Select[Table[i/2^(PrimeOmega[i] - 1), {i, 1, m[z], 2}], # <= z && Mod[#, 1] != 0 &] (*set*)
PROG
(PARI) nap(n, k) = sum(i=1, n, bigomega(i)==k);
a(n) = my(k=max(1, floor(log(n/2)/(log(3)-log(2))))); nap(n*2^(k-1), k) - primepi(n); \\ Michel Marcus, Jun 27 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Friedjof Tellkamp, Jun 25 2024
STATUS
approved