Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Revision History for A337884

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Array read by descending antidiagonals: T(n,k) is the number of unoriented colorings of the triangular faces of a regular n-dimensional simplex using k or fewer colors.
(history; published version)
#4 by N. J. A. Sloane at Mon Sep 28 21:41:00 EDT 2020
STATUS

proposed

approved

#3 by Robert A. Russell at Mon Sep 28 18:04:15 EDT 2020
STATUS

editing

proposed

#2 by Robert A. Russell at Mon Sep 28 16:56:12 EDT 2020
NAME

allocated for Robert A. Russell

Array read by descending antidiagonals: T(n,k) is the number of unoriented colorings of the triangular faces of a regular n-dimensional simplex using k or fewer colors.

DATA

1, 2, 1, 3, 5, 1, 4, 15, 34, 1, 5, 35, 792, 2136, 1, 6, 70, 10688, 4977909, 7013320, 1, 7, 126, 90005, 1533771392, 9930666709494, 1788782616656, 1, 8, 210, 533358, 132597435125, 234249157811872000, 12979877431438089379035, 53304527811667897248, 1

OFFSET

2,2

COMMENTS

Each chiral pair is counted as one when enumerating unoriented arrangements. An n-simplex has n+1 vertices. For n=2, the figure is a triangle with one triangular face. For n=3, the figure is a tetrahedron with 4 triangular faces. For higher n, the number of triangular faces is C(n+1,3).

Also the number of unoriented colorings of the peaks of a regular n-dimensional simplex. A peak of an n-simplex is an (n-3)-dimensional simplex.

LINKS

E. M. Palmer and R. W. Robinson, <a href="https://doi.org/10.1007/BF02392038">Enumeration under two representations of the wreath product</a>, Acta Math., 131 (1973), 123-143.

FORMULA

The algorithm used in the Mathematica program below assigns each permutation of the vertices to a partition of n+1. It then determines the number of permutations for each partition and the cycle index for each partition using a formula for binary Lyndon words. If the value of m is increased, one can enumerate colorings of higher-dimensional elements beginning with T(m,1).

T(n,k) = A337883(n,k) - A337885(n,k) = (A337883(n,k) + A337886(n,k)) / 2 = A337885(n,k) + A337886(n,k).

EXAMPLE

Table begins with T(2,1):

1 2 3 4 5 6 7 ...

1 5 15 35 70 126 210 ...

1 34 792 10688 90005 533358 2437848 ...

1 2136 4977909 1533771392 132597435125 5079767935320 110837593383153 ...

For T(3,4)=35, the 34 achiral arrangements are AAAA, AAAB, AAAC, AAAD, AABB, AABC, AABD, AACC, AACD, AADD, ABBB, ABBC, ABBD, ABCC, ABDD, ACCC, ACCD, ACDD, ADDD, BBBB, BBBC, BBBD, BBCC, BBCD, BBDD, BCCC, BCCD, BCDD, BDDD, CCCC, CCCD, CCDD, CDDD, and DDDD. The chiral pair is ABCD-ABDC.

MATHEMATICA

m=2; (* dimension of color element, here a triangular face *)

lw[n_, k_]:=lw[n, k]=DivisorSum[GCD[n, k], MoebiusMu[#]Binomial[n/#, k/#]&]/n (*A051168*)

cxx[{a_, b_}, {c_, d_}]:={LCM[a, c], GCD[a, c] b d}

compress[x:{{_, _} ...}] := (s=Sort[x]; For[i=Length[s], i>1, i-=1, If[s[[i, 1]]==s[[i-1, 1]], s[[i-1, 2]]+=s[[i, 2]]; s=Delete[s, i], Null]]; s)

combine[a : {{_, _} ...}, b : {{_, _} ...}] := Outer[cxx, a, b, 1]

CX[p_List, 0] := {{1, 1}} (* cycle index for partition p, m vertices *)

CX[{n_Integer}, m_] := If[2m>n, CX[{n}, n-m], CX[{n}, m] = Table[{n/k, lw[n/k, m/k]}, {k, Reverse[Divisors[GCD[n, m]]]}]]

CX[p_List, m_Integer] := CX[p, m] = Module[{v = Total[p], q, r}, If[2 m > v, CX[p, v - m], q = Drop[p, -1]; r = Last[p]; compress[Flatten[Join[{{CX[q, m]}}, Table[combine[CX[q, m - j], CX[{r}, j]], {j, Min[m, r]}]], 2]]]]

pc[p_] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #] &/@ mb; Total[p]!/(Times @@ (ci!) Times @@ (mb^ci))] (* partition count *)

row[n_Integer] := row[n] = Factor[Total[pc[#] j^Total[CX[#, m+1]][[2]] & /@ IntegerPartitions[n+1]]/(n+1)!]

array[n_, k_] := row[n] /. j -> k

Table[array[n, d+m-n], {d, 8}, {n, m, d+m-1}] // Flatten

CROSSREFS

Cf. A337883 (oriented), A337885 (chiral), A337886 (achiral), A051168 (binary Lyndon words).

Other elements: A325000 (vertices), A327084 (edges).

Other polytopes: A337888 (orthotope), A337892 (orthoplex).

Rows 2-4 are A000027, A000332(n+3), A063843.

KEYWORD

allocated

nonn,tabl

AUTHOR

Robert A. Russell, Sep 28 2020

STATUS

approved

editing

#1 by Robert A. Russell at Mon Sep 28 16:40:28 EDT 2020
NAME

allocated for Robert A. Russell

KEYWORD

allocated

STATUS

approved