Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a000292 -id:a000292
     Sort: relevance | references | number | modified | created      Format: long | short | data
Euler transform of A000292.
(Formerly M3859 N1581)
+20
35
1, 5, 15, 45, 120, 331, 855, 2214, 5545, 13741, 33362, 80091, 189339, 442799, 1023192, 2340904, 5302061, 11902618, 26488454, 58479965, 128120214, 278680698, 602009786, 1292027222, 2755684669, 5842618668, 12317175320, 25825429276, 53865355154, 111786084504, 230867856903, 474585792077, 971209629993
OFFSET
1,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
A. O. L. Atkin, P. Bratley, I. G. McDonald and J. K. S. McKay, Some computations for m-dimensional partitions, Proc. Camb. Phil. Soc., 63 (1967), 1097-1100.
A. O. L. Atkin, P. Bratley, I. G. McDonald and J. K. S. McKay, Some computations for m-dimensional partitions, Proc. Camb. Phil. Soc., 63 (1967), 1097-1100. [Annotated scanned copy]
Srivatsan Balakrishnan, Suresh Govindarajan and Naveen S. Prabhakar, On the asymptotics of higher-dimensional partitions, arXiv:1105.6231 [cond-mat.stat-mech], 2011, p. 20.
N. J. A. Sloane, Transforms
FORMULA
a(n) ~ Zeta(5)^(379/3600) / (2^(521/1800) * sqrt(5*Pi) * n^(2179/3600)) * exp(Zeta'(-1)/3 - Zeta(3) / (8*Pi^2) - Pi^16 / (3110400000 * Zeta(5)^3) + Pi^8*Zeta(3) / (216000 * Zeta(5)^2) - Zeta(3)^2 / (90*Zeta(5)) + Zeta'(-3)/6 + (Pi^12 / (10800000 * 2^(2/5) * Zeta(5)^(11/5)) - Pi^4 * Zeta(3) / (900 * 2^(2/5) * Zeta(5)^(6/5))) * n^(1/5) + (Zeta(3) / (3 * 2^(4/5) * Zeta(5)^(2/5)) - Pi^8 / (36000 * 2^(4/5) * Zeta(5)^(7/5))) * n^(2/5) + Pi^4 / (180 * 2^(1/5) * Zeta(5)^(3/5)) * n^(3/5) + 5*Zeta(5)^(1/5) / 2^(8/5) * n^(4/5)). - Vaclav Kotesovec, Mar 12 2015
MAPLE
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d, j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:= etr(n-> binomial(n+2, 3)): seq(a(n), n=1..26); # Alois P. Heinz, Sep 08 2008
MATHEMATICA
max = 33; f[x_] := Exp[ Sum[ x^k/(1-x^k)^4/k, {k, 1, max}]]; Drop[ CoefficientList[ Series[ f[x], {x, 0, max}], x], 1](* Jean-François Alcover, Nov 21 2011, after Joerg Arndt *)
nmax=50; Rest[CoefficientList[Series[Product[1/(1-x^k)^(k*(k+1)*(k+2)/6), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Mar 11 2015 *)
etr[p_] := Module[{b}, b[n_] := b[n] = If[n==0, 1, Sum[DivisorSum[j, #*p[#] &]*b[n-j], {j, 1, n}]/n]; b]; a = etr[Binomial[#+2, 3]&]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Nov 24 2015, after Alois P. Heinz *)
PROG
(PARI) a(n)=if(n<1, 0, polcoeff(exp(sum(k=1, n, x^k/(1-x^k)^4/k, x*O(x^n))), n)) /* Joerg Arndt, Apr 16 2010 */
(PARI) N=66; x='x+O('x^66); gf=-1 + exp(sum(k=1, N, x^k/(1-x^k)^4/k)); Vec(gf) /* Joerg Arndt, Jul 06 2011 */
(Sage) # uses[EulerTransform from A166861] and prepends a(0) = 1.
a = EulerTransform(lambda n: n*(n+1)*(n+2)//6)
print([a(n) for n in range(33)]) # Peter Luschny, Nov 17 2022
KEYWORD
nonn,nice
STATUS
approved
Minimal number of tetrahedral numbers (A000292(k) = k(k+1)(k+2)/6) needed to sum to n.
+20
35
1, 2, 3, 1, 2, 3, 4, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 2, 3, 4, 5, 3, 1, 2, 3, 4, 2, 2, 3, 4, 3, 3, 2, 3, 4, 4, 3, 3, 4, 5, 4, 4, 2, 1, 2, 3, 3, 2, 3, 4, 4, 3, 3, 2, 3, 4, 4, 2, 3, 4, 5, 3, 3, 2, 3, 4, 4, 3, 4, 5, 5, 1, 2, 3, 4, 2, 3, 3, 2, 3, 4, 2, 3, 3, 4, 3, 4, 4, 3, 4
OFFSET
1,2
COMMENTS
According to Dickson, Pollock conjectures that a(n) <= 5 for all n. Watson shows that a(n) <= 8 for all n, and Salzer and Levine show that a(n) <= 5 for n <= 452479659. - N. J. A. Sloane, Jul 15 2011
Possible correction of the first comment by Sloane 2011: it appears to me from the linked reference by Salzer and Levine 1968 that 452479659 is instead the upper limit for sums of five Qx = Tx + x, where Tx are the tetrahedral numbers we want. They also mention an upper limit for sums of five Tx, which is: a(n) <= 5 for n <= 276976383. - Ewoud Dronkert, May 30 2024
If we use the greedy algorithm for this, we get A281367. - N. J. A. Sloane, Jan 30 2017
Could be extended with a(0) = 0, in analogy to A061336. Kim (2003, first row of table "d = 3" on p. 73) gives max {a(n)} = 5 as a "numerical result", but the value has no "* denoting exact values" (see Remark at end of paper), which means this could be incorrect. - M. F. Hasler, Mar 06 2017, edited Sep 22 2022
REFERENCES
Dickson, L. E., History of the Theory of Numbers, Vol. 2: Diophantine Analysis. New York: Dover, 1952, see p. 13.
LINKS
Hyun Kwang Kim, On regular polytope numbers, Proc. Amer. Math. Soc. 131 (2003), pp. 65-75.
N. J. A. Sloane, Transforms.
G. L. Watson, Sums of eight values of a cubic polynomial, J. London Math. Soc., 27 (1952), 217-224.
Eric Weisstein's World of Mathematics, Tetrahedral Number.
MAPLE
tet:=[seq((n^3-n)/6, n=1..20)];
LAGRANGE(tet, 8, 120); # the LAGRANGE transform of a sequence is defined in A193101. - N. J. A. Sloane, Jul 15 2011
PROG
(PARI) \\ available on request. - M. F. Hasler, Mar 06 2017
(PARI)
seq(N) = {
my(a = vector(N, k, 8), T = k->(k*(k+1)*(k+2))\6);
for (n = 1, N,
my (k1 = sqrtnint((6*n)\8, 3), k2 = sqrtnint(6*n, 3));
while(n < T(k2), k2--); if (n == T(k2), a[n] = 1; next());
for (k = k1, k2, a[n] = min(a[n], a[n - T(k)] + 1))); a;
};
seq(102) \\ Gheorghe Coserea, Mar 14 2017
CROSSREFS
Cf. A000292 (tetrahedral numbers), A000797 (numbers that need 5 tetrahedral numbers).
See also A102795-A102806, A102855-A102858, A193101, A193105, A281367 (the "triangular nachos" numbers).
Cf. A061336 (analog for triangular numbers).
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Feb 26 2005
EXTENSIONS
Edited by N. J. A. Sloane, Jul 15 2011
Edited by M. F. Hasler, Mar 06 2017
STATUS
approved
Number of compositions (ordered partitions) of n into tetrahedral (or triangular pyramidal) numbers (A000292).
+20
16
1, 1, 1, 1, 2, 3, 4, 5, 7, 10, 15, 21, 29, 40, 57, 81, 114, 159, 223, 314, 444, 625, 878, 1233, 1736, 2445, 3441, 4838, 6804, 9573, 13473, 18957, 26668, 37514, 52780, 74264, 104488, 147000, 206808, 290961, 409369, 575955, 810314, 1140029, 1603924, 2256603, 3174867, 4466763, 6284339, 8841533, 12439323
OFFSET
0,5
FORMULA
G.f.: 1/(1 - Sum_{k>=1} x^(k*(k+1)*(k+2)/6)).
EXAMPLE
a(8) = 7 because we have [4, 4], [4, 1, 1, 1, 1], [1, 4, 1, 1, 1], [1, 1, 4, 1, 1], [1, 1, 1, 4, 1], [1, 1, 1, 1, 4] and [1, 1, 1, 1, 1, 1, 1, 1].
MATHEMATICA
nmax = 50; CoefficientList[Series[1/(1 - Sum[x^(k (k + 1) (k + 2)/6), {k, 1, nmax}]), {x, 0, nmax}], x]
PROG
(PARI) Vec(1/(1 - sum(k=1, 50, x^(k*(k + 1)*(k + 2)/6)) + O(x^51))) \\ Indranil Ghosh, Mar 15 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Feb 19 2017
STATUS
approved
Platonic numbers: a(n) is a tetrahedral (A000292), cube (A000578), octahedral (A005900), dodecahedral (A006566) or icosahedral (A006564) number.
+20
11
1, 4, 6, 8, 10, 12, 19, 20, 27, 35, 44, 48, 56, 64, 84, 85, 120, 124, 125, 146, 165, 216, 220, 231, 255, 286, 343, 344, 364, 455, 456, 489, 512, 560, 670, 680, 729, 742, 816, 891, 969, 1000, 1128, 1140, 1156, 1330, 1331, 1469, 1540, 1629, 1728, 1771, 1834
OFFSET
1,2
COMMENTS
19, the 3rd octahedral number, is the only prime platonic number. - Jean-François Alcover, Oct 11 2012
MATHEMATICA
nn = 25; t1 = Table[n (n + 1) (n + 2)/6, {n, nn}]; t2 = Table[n^3, {n, nn}]; t3 = Table[(2*n^3 + n)/3, {n, nn}]; t4 = Table[n (3*n - 1) (3*n - 2)/2, {n, nn}]; t5 = Table[n (5*n^2 - 5*n + 2)/2, {n, nn}]; Select[Union[t1, t2, t3, t4, t5], # <= t1[[-1]] &] (* T. D. Noe, Oct 13 2012 *)
PROG
(Haskell)
a053012 n = a053012_list !! (n-1)
a053012_list = tail $ f
[a000292_list, a000578_list, a005900_list, a006566_list, a006564_list]
where f pss = m : f (map (dropWhile (<= m)) pss)
where m = minimum (map head pss)
-- Reinhard Zumkeller, Jun 17 2013
(PARI) listpoly(lim, poly[..])=my(v=List()); for(i=1, #poly, my(P=poly[i], x=variable(P), f=k->subst(P, x, k), n, t); while((t=f(n++))<=lim, listput(v, t))); Set(v)
list(lim)=my(n='n); listpoly(lim, n*(n+1)*(n+2)/6, n^3, (2*n^3+n)/3, n*(3*n-1)*(3*n-2)/2, n*(5*n^2-5*n+2)/2) \\ Charles R Greathouse IV, Oct 11 2016
CROSSREFS
Numbers of partitions into Platonic numbers: A226748, A226749.
KEYWORD
easy,nice,nonn
AUTHOR
Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Feb 22 2000
STATUS
approved
Number T(n,k) of compositions of n into k parts with distinct multiplicities, where parts are counted without multiplicities; triangle T(n,k), n>=0, 0<=k<=max{i:A000292(i)<=n}, read by rows.
+20
10
1, 0, 1, 0, 2, 0, 2, 0, 3, 3, 0, 2, 10, 0, 4, 12, 0, 2, 38, 0, 4, 56, 0, 3, 79, 0, 4, 152, 60, 0, 2, 251, 285, 0, 6, 284, 498, 0, 2, 594, 1438, 0, 4, 920, 2816, 0, 4, 1108, 5208, 0, 5, 2136, 11195, 0, 2, 3402, 24094, 0, 6, 4407, 38523, 0, 2, 8350, 85182
OFFSET
0,5
LINKS
EXAMPLE
T(5,1) = 2: [1,1,1,1,1], [5].
T(5,2) = 10: [1,1,1,2], [1,1,2,1], [1,2,1,1], [2,1,1,1], [1,2,2], [2,1,2], [2,2,1], [1,1,3], [1,3,1], [3,1,1].
Triangle T(n,k) begins:
1;
0, 1;
0, 2;
0, 2;
0, 3, 3;
0, 2, 10;
0, 4, 12;
0, 2, 38;
0, 4, 56;
0, 3, 79;
0, 4, 152, 60;
MAPLE
b:= proc(n, i, s) option remember; `if`(n=0, add(j, j=s)!,
`if`(i<1, 0, expand(add(`if`(j>0 and j in s, 0, `if`(j=0, 1, x)*
b(n-i*j, i-1, `if`(j=0, s, s union {j}))/j!), j=0..n/i))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, {})):
seq(T(n), n=0..16);
MATHEMATICA
b[n_, i_, s_List] := b[n, i, s] = If[n == 0, Total[s]!, If[i<1, 0, Expand[ Sum[ If[j>0 && MemberQ[s, j], 0, If[j == 0, 1, x]*b[n-i*j, i-1, If[j == 0, s, s ~Union~ {j}]]/j!], {j, 0, n/i}]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n, {}]]; Table[T[n], {n, 0, 16}] // Flatten (* Jean-François Alcover, Feb 11 2015, after Alois P. Heinz *)
CROSSREFS
Row sums give A242882.
Cf. A182485 (the same for partitions), A242887.
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, May 25 2014
STATUS
approved
Number of partitions of n into exactly k different parts with distinct multiplicities; triangle T(n,k), n>=0, 0<=k<=max{i:A000292(i)<=n}, read by rows.
+20
9
1, 0, 1, 0, 2, 0, 2, 0, 3, 1, 0, 2, 3, 0, 4, 3, 0, 2, 8, 0, 4, 9, 0, 3, 12, 0, 4, 16, 1, 0, 2, 22, 4, 0, 6, 20, 5, 0, 2, 31, 12, 0, 4, 35, 16, 0, 4, 34, 24, 0, 5, 44, 33, 0, 2, 51, 52, 0, 6, 53, 57, 0, 2, 62, 89, 0, 6, 65, 100, 1, 0, 4, 68, 131, 5, 0, 4, 87
OFFSET
0,5
LINKS
EXAMPLE
T(0,0) = 1: [].
T(1,1) = 1: [1].
T(2,1) = 2: [1,1], [2].
T(4,1) = 3: [1,1,1,1], [2,2], [4].
T(4,2) = 1: [2,1,1]; part 2 occurs once and part 1 occurs twice.
T(5,2) = 3: [2,1,1,1], [2,2,1], [3,1,1].
T(7,2) = 8: [2,1,1,1,1,1], [2,2,1,1,1], [2,2,2,1], [3,1,1,1,1], [3,2,2], [3,3,1], [4,1,1,1], [5,1,1].
T(10,1) = 4: [1,1,1,1,1,1,1,1,1,1], [2,2,2,2,2], [5,5], [10].
T(10,3) = 1: [3,2,2,1,1,1].
Triangle T(n,k) begins:
1;
0, 1;
0, 2;
0, 2;
0, 3, 1;
0, 2, 3;
0, 4, 3;
0, 2, 8;
0, 4, 9;
0, 3, 12;
0, 4, 16, 1;
MAPLE
b:= proc(n, i, t, s) option remember;
`if`(nops(s)>t, 0, `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, t, s)+
add(`if`(j in s, 0, b(n-i*j, i-1, t, s union {j})), j=1..n/i))))
end:
g:= proc(n) local i; for i while i*(i+1)*(i+2)/6<=n do od; i-1 end:
T:= n-> seq(b(n, n, k, {}) -b(n, n, k-1, {}), k=0..g(n)):
seq(T(n), n=0..30);
MATHEMATICA
b[n_, i_, t_, s_] := b[n, i, t, s] = If[Length[s] > t, 0, If[n == 0, 1, If[i < 1, 0, b[n, i-1, t, s] + Sum[If[MemberQ[s, j], 0, b[n-i*j, i-1, t, s ~Union~ {j}]], {j, 1, n/i}]]]]; g[n_] := Module[{i}, For[ i = 1, i*(i+1)*(i+2)/6 <= n , i++]; i-1 ]; t[n_] := Table [b[n, n, k, {}] - b[n, n, k-1, {}], {k, 0, g[n]}]; Table [t[n], {n, 0, 30}] // Flatten (* Jean-François Alcover, Dec 19 2013, translated from Maple *)
CROSSREFS
Row sums give: A098859.
First row with length (t+1): A000292(t).
Cf. A242896 (the same for compositions):
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, May 01 2012
STATUS
approved
Exponential transform of binomial(n,3) = A000292(n-2).
+20
8
1, 0, 0, 1, 4, 10, 30, 175, 1176, 7084, 42120, 286605, 2270180, 19213766, 166326524, 1497096055, 14374680880, 147259920760, 1582837679056, 17659771122969, 204674606377140, 2473357218561250, 31148510170120420, 407154732691440811, 5504706823227724904
OFFSET
0,5
COMMENTS
a(n) is the number of ways of placing n labeled balls into indistinguishable boxes, where in each filled box 3 balls are seen at the top.
a(n) is also the number of forests of labeled rooted trees of height at most 1, with n labels, where each root contains 3 labels.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..530 (terms 0..200 from Alois P. Heinz)
N. J. A. Sloane, Transforms
FORMULA
E.g.f.: exp(exp(x)*x^3/3!).
MAPLE
a:= proc(n) option remember; `if`(n=0, 1,
add(binomial(n-1, j-1) *binomial(j, 3) *a(n-j), j=1..n))
end:
seq(a(n), n=0..30);
MATHEMATICA
Table[Sum[BellY[n, k, Binomial[Range[n], 3]], {k, 0, n}], {n, 0, 25}] (* Vladimir Reshetnikov, Nov 09 2016 *)
CROSSREFS
3rd column of A145460, A143398.
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 10 2008
STATUS
approved
Triplicated tetrahedral numbers A000292.
+20
8
1, 1, 1, 4, 4, 4, 10, 10, 10, 20, 20, 20, 35, 35, 35, 56, 56, 56, 84, 84, 84, 120, 120, 120, 165, 165, 165, 220, 220, 220, 286, 286, 286, 364, 364, 364, 455, 455, 455, 560, 560, 560, 680, 680, 680, 816, 816, 816, 969, 969, 969
OFFSET
0,4
COMMENTS
The Ca1 and Ze3 triangle sums, see A180662 for their definitions, of the triangle A159797 are linear sums of shifted versions of the triplicated tetrahedral numbers, e.g. Ca1(n) = a(n-1) + a(n-2) + 2*a(n-3) + a(n-6).
The Ca1, Ca2, Ze3 and Ze4 triangle sums of the Connell sequence A001614 as a triangle are also linear sums of shifted versions of the sequence given above.
FORMULA
a(n) = binomial(floor(n/3)+3,3).
a(n) + a(n-1) + a(n-2) = A144677(n).
a(n) = Sum_{k=0..n} (A144677(n-k)*A049347(k)).
G.f.: 1/((x-1)^4*(x^2+x+1)^3).
Sum_{n>=0} 1/a(n) = 9/2. - Amiram Eldar, Aug 18 2022
MAPLE
A190717:= proc(n) option remember; A190717(n):= binomial(floor(n/3)+3, 3) end: seq(A190717(n), n=0..50);
MATHEMATICA
LinearRecurrence[{1, 0, 3, -3, 0, -3, 3, 0, 1, -1}, {1, 1, 1, 4, 4, 4, 10, 10, 10, 20}, 60] (* Harvey P. Dale, Mar 09 2018 *)
CROSSREFS
Cf. A000292 (tetrahedral numbers), A058187 (duplicated), this sequence (triplicated), A190718 (quadruplicated), A049347, A144677.
KEYWORD
nonn,easy
AUTHOR
Johannes W. Meijer, May 18 2011
STATUS
approved
Quadruplicated tetrahedral numbers A000292.
+20
8
1, 1, 1, 1, 4, 4, 4, 4, 10, 10, 10, 10, 20, 20, 20, 20, 35, 35, 35, 35, 56, 56, 56, 56, 84, 84, 84, 84, 120, 120, 120, 120, 165, 165, 165, 165, 220, 220, 220, 220, 286, 286, 286, 286, 364, 364, 364, 364, 455, 455, 455, 455
OFFSET
0,5
COMMENTS
The Gi1 triangle sums, for the definitions of these and other triangle sums see A180662, of the triangle A159797 are linear sums of shifted versions of the quadruplicated tetrahedral numbers A000292, i.e., Gi1(n) = a(n-1) + a(n-2) + a(n-3) + 2*a(n-4) + a(n-8).
The Gi1 and Gi2 triangle sums of the Connell sequence A001614 as a triangle are also linear sums of shifted versions of the sequence given above.
FORMULA
a(n) = binomial(floor(n/4)+3,3).
a(n-3) + a(n-2) + a(n-1) + a(n) = A144678(n).
a(n) = +a(n-1) +3*a(n-4) -3*a(n-5) -3*a(n-8) +3*a(n-9) +a(n-12) -a(n-13).
G.f.: 1 / ( (1+x)^3*(1+x^2)^3*(x-1)^4 ).
Sum_{n>=0} 1/a(n) = 6. - Amiram Eldar, Aug 18 2022
MAPLE
A190718:= proc(n) binomial(floor(n/4)+3, 3) end:
seq(A190718(n), n=0..52);
MATHEMATICA
LinearRecurrence[{1, 0, 0, 3, -3, 0, 0, -3, 3, 0, 0, 1, -1}, {1, 1, 1, 1, 4, 4, 4, 4, 10, 10, 10, 10, 20}, 60] (* Harvey P. Dale, Oct 20 2012 *)
CROSSREFS
Cf. A000292 (tetrahedral numbers), A058187 (duplicated), A190717 (triplicated).
KEYWORD
nonn,easy
AUTHOR
Johannes W. Meijer, May 18 2011
STATUS
approved
Numerator of sum of reciprocals of first n tetrahedral numbers A000292.
+20
7
1, 5, 27, 7, 10, 81, 35, 22, 81, 65, 77, 135, 52, 119, 405, 76, 85, 567, 209, 115, 378, 275, 299, 486, 175, 377, 1215, 217, 232, 1485, 527, 280, 891, 629, 665, 1053, 370, 779, 2457, 430, 451, 2835, 989, 517, 1620, 1127, 1175, 1836, 637, 1325, 4131, 715, 742
OFFSET
1,2
COMMENTS
Denominators are A118392. Fractions are: 1/1, 5/4, 27/20, 7/5, 10/7, 81/56, 35/24, 22/15, 81/55, 65/44, 77/52, 135/91, 52/35, 119/80, 405/272, 76/51, 85/57, 567/380, 209/140, 115/77, 378/253, 275/184, 299/200, 486/325, 175/117, 377/252, 1215/812, 217/145, 232/155, 1485/992.
2n+3 divides a(2n). 2n-1 divides a(2n-1). p divides a(p) for prime p>2. The only primes in a(n) are a(2) = 5 and a(4) = 7. - Alexander Adamchuk, May 08 2007
LINKS
FORMULA
A118391(n)/A118392(n) = Sum_{i=1..n} 1/A000292(n).
A118391(n)/A118392(n) = Sum_{i=1..n} 1/C(n+2,3).
A118391(n)/A118392(n) = Sum_{i=1..n} 6/(n*(n+1)*(n+2)).
a(n) = Numerator( 3*n*(n+3)/(2*(n+1)*(n+2)) ). - Alexander Adamchuk, May 08 2007
EXAMPLE
a(1) = 1 = numerator of 1/1.
a(2) = 5 = numerator of 5/4 = 1/1 + 1/4.
a(3) = 27 = numerator of 27/20 = 1/1 + 1/4 + 1/10.
a(4) = 7 = numerator of 7/5 = 1/1 + 1/4 + 1/10 + 1/20.
a(5) = 10 = numerator of 10/7 = 1/1 + 1/4 + 1/10 + 1/20 + 1/35.
a(20) = 115 = numerator of 115/77 = 1/1 + 1/4 + 1/10 + 1/20 + 1/35 + 1/56 + 1/84 + 1/120 + 1/165 + 1/220 + 1/286 + 1/364 + 1/455 + 1/560 + 1/680 + 1/816 + 1/969 + 1/1140 + 1/1330 + 1/1540.
MAPLE
A118391:= n-> numer(3*n*(n+3)/(2*(n+1)*(n+2))); seq(A118391(n), n=1..60) # G. C. Greubel, Feb 18 2021
MATHEMATICA
Table[ Numerator[3n(n+3)/(2(n+1)(n+2))], {n, 1, 100} ] (* Alexander Adamchuk, May 08 2007 *)
Accumulate[1/Binomial[Range[60]+2, 3]]//Numerator (* Harvey P. Dale, Aug 31 2023 *)
PROG
(PARI) s=0; for(i=3, 50, s+=1/binomial(i, 3); print(numerator(s))) /* Phil Carmody, Mar 27 2012 */
(Sage) [numerator(3*n*(n+3)/(2*(n+1)*(n+2))) for n in (1..60)] # G. C. Greubel, Feb 18 2021
(Magma) [Numerator(3*n*(n+3)/(2*(n+1)*(n+2))): n in [1..60]]; // G. C. Greubel, Feb 18 2021
CROSSREFS
KEYWORD
easy,frac,nonn
AUTHOR
Jonathan Vos Post, Apr 27 2006
EXTENSIONS
More terms from Alexander Adamchuk, May 08 2007
STATUS
approved

Search completed in 0.754 seconds