Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a001433 -id:a001433
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle T(n,k) read by rows, giving number of graphs with n nodes (n >= 1) and k edges (0 <= k <= n(n-1)/2).
+10
83
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 1, 1, 1, 2, 4, 6, 6, 6, 4, 2, 1, 1, 1, 1, 2, 5, 9, 15, 21, 24, 24, 21, 15, 9, 5, 2, 1, 1, 1, 1, 2, 5, 10, 21, 41, 65, 97, 131, 148, 148, 131, 97, 65, 41, 21, 10, 5, 2, 1, 1, 1, 1, 2, 5, 11, 24, 56, 115, 221, 402, 663, 980, 1312, 1557, 1646, 1557
OFFSET
1,10
COMMENTS
T(n,k)=1 for n>=2 with k=0, k=1, k=n*(n-1)/2-1 and k=n*(n-1)/2 (therefore the quadruple {1,1,1,1} marks the transition to the next sublist for a given number of vertices (n>2)). [Edited by Peter Munn, Mar 20 2021]
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 264.
J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 519.
F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 214.
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 240.
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 146.
R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
LINKS
Leonid Bedratyuk, A new formula for the generating function of the numbers of simple graphs, arXiv:1512.06355 [math.CO], 2015.
FindStat - Combinatorial Statistic Finder, The number of edges of a graph.
R. J. Mathar, Statistics on Small Graphs, arXiv:1709.09000 [math.CO] (2017) Table 65.
Sriram V. Pemmaraju, Combinatorica 2.0
Gordon Royle, Small graphs
S. S. Skiena, Generating graphs
Peter Steinbach, Field Guide to Simple Graphs, Volume 2, Overview of the 12 Parts (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
Peter Steinbach, Field Guide to Simple Graphs, Volume 2, Part 10
Peter Steinbach, Field Guide to Simple Graphs, Volume 2, Part 11
Peter Steinbach, Field Guide to Simple Graphs, Volume 2, Part 12
James Turner and William H. Kautz, A survey of progress in graph theory in the Soviet Union SIAM Rev. 12 1970 suppl. iv+68 pp. MR0268074 (42 #2973). See p. 19.
Eric Weisstein's World of Mathematics, Connected Graph
Eric Weisstein's World of Mathematics, Simple Graph
A. E. Yurtsun, Principles of enumeration of the number of graphs, Ukrainian Mathematical Journal, January-February, 1967, Volume 19, Issue 1, pp 123-125, DOI 10.1007/BF01085184.
FORMULA
O.g.f. for n-th row: 1/n! Sum_g det(1-g z^2)/det(1-g z) where g runs through the natural matrix representation of the pair group A^2_n (for A^2_n see F. Harary and E. M. Palmer, Graphical Enumeration, page 83). - Leonid Bedratyuk, Sep 23 2014
EXAMPLE
Triangle begins:
1,
1,1,
1,1,1,1,
1,1,2,3,2,1,1, [graphs with 4 nodes and from 0 to 6 edges]
1,1,2,4,6,6,6,4,2,1,1,
1,1,2,5,9,15,21,24,24,21,15,9,5,2,1,1,
1,1,2,5,10,21,41,65,97,131,148,148,131,97,65,41,21,10,5,2,1,1,
...
MAPLE
seq(seq(GraphTheory:-NonIsomorphicGraphs(v, e), e=0..v*(v-1)/2), v=1..9); # Robert Israel, Dec 22 2015
MATHEMATICA
<< Combinatorica`; Table[CoefficientList[GraphPolynomial[n, x], x], {n, 8}] // Flatten (* Eric W. Weisstein, Mar 20 2013 *)
<< Combinatorica`; Table[NumberOfGraphs[v, e], {v, 8}, {e, 0, Binomial[v, 2]}] // Flatten (* Eric W. Weisstein, May 17 2017 *)
permcount[v_] := Module[{m=1, s=0, k=0, t}, For[i=1, i <= Length[v], i++, t = v[[i]]; k = If[i>1 && t == v[[i-1]], k+1, 1]; m *= t*k; s += t]; s!/m];
edges[v_, t_] := Product[Product[g = GCD[v[[i]], v[[j]]]; t[v[[i]]*v[[j]]/ g]^g, {j, 1, i-1}], {i, 2, Length[v]}]*Product[c = v[[i]]; t[c]^Quotient[ c-1, 2]*If[OddQ[c], 1, t[c/2]], {i, 1, Length[v]}];
row[n_] := Module[{s = 0}, Do[s += permcount[p]*edges[p, 1 + x^#&], {p, IntegerPartitions[n]}]; s/n!] // Expand // CoefficientList[#, x]&;
Array[row, 8] // Flatten (* Jean-François Alcover, Jan 07 2021, after Andrew Howroyd *)
PROG
(Sage)
def T(n, k):
return len(list(graphs(n, size=k)))
# Ralf Stephan, May 30 2014
(PARI)
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
G(n, A=0) = {my(s=0); forpart(p=n, s+=permcount(p)*edges(p, i->1+x^i+A)); s/n!}
{ for(n=1, 7, print(Vecrev(G(n)))) } \\ Andrew Howroyd, Oct 22 2019, updated Jan 09 2024
CROSSREFS
Row sums give A000088.
Cf. also A039735, A002905, A054924 (connected), A084546 (labeled graphs).
Row lengths: A000124; number of connected graphs for given number of vertices: A001349; number of graphs for given number of edges: A000664.
Cf. also A000055.
KEYWORD
nonn,tabf,nice,look
AUTHOR
N. J. A. Sloane, Mar 15 1996
EXTENSIONS
Additional comments from Arne Ring (arne.ring(AT)epost.de), Oct 03 2002
Text belonging in a different sequence deleted by Peter Munn, Mar 20 2021
STATUS
approved
Triangle of trees with n nodes and k leaves, 2 <= k <= n.
+10
21
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 2, 1, 0, 1, 3, 4, 2, 1, 0, 1, 4, 8, 6, 3, 1, 0, 1, 5, 14, 14, 9, 3, 1, 0, 1, 7, 23, 32, 26, 12, 4, 1, 0, 1, 8, 36, 64, 66, 39, 16, 4, 1, 0, 1, 10, 54, 123, 158, 119, 60, 20, 5, 1, 0, 1, 12, 78, 219, 350, 325, 202, 83, 25, 5, 1, 0
OFFSET
2,12
REFERENCES
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 80, Problem 3.9.
FORMULA
G.f.: A(x, y)=(1-x+x*y)*B(x, y)+(1/2)*(B(x^2, y^2)-B(x, y)^2), where B(x, y) is g.f. of A055277.
EXAMPLE
Triangle begins:
n=2: 1
n=3: 1 0
n=4: 1 1 0
n=5: 1 1 1 0
n=6: 1 2 2 1 0
n=7: 1 3 4 2 1 0
n=8: 1 4 8 6 3 1 0
n=9: 1 5 14 14 9 3 1 0
n=10: 1 7 23 32 26 12 4 1 0
n=11: 1 8 36 64 66 39 16 4 1 0
n=12: 1 10 54 123 158 119 60 20 5 1 0
n=13: 1 12 78 219 350 325 202 83 25 5 1 0
PROG
(PARI)
EulerMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i, vars))/i ))-1)}
T(n)={my(u=[y]); for(n=2, n, u=concat([y], EulerMT(u))); my(r=x*Ser(u), v=Vec(r*(1-x+x*y) + (substvec(r, [x, y], [x^2, y^2]) - r^2)/2)); vector(n-1, k, Vecrev(v[1+k]/y^2, k))}
{ my(A=T(10)); for(n=1, #A, print(A[n])) }
CROSSREFS
Row sums give A000055, row sums with weight k give A003228.
The labeled version is A055314.
Central column is A358107.
Left of central column is A359398.
KEYWORD
nonn,tabl
AUTHOR
Christian G. Bower, May 09 2000
STATUS
approved
Number of unlabeled trees covering 2n nodes, n+1 of which are leaves.
+10
4
1, 1, 2, 6, 26, 119, 626, 3495, 20688, 127339, 810418, 5293790, 35351571, 240478715, 1662071181, 11646620758, 82601643511, 592110678762, 4284830131865, 31271691087861, 229980550743717, 1703097703162249, 12691879796699486, 95129358337729084, 716801612475691847
OFFSET
1,3
CROSSREFS
Central column of A055290.
The labeled version is the central column of A055314.
For n leaves we have A359398.
A000272 counts trees, bisection A163395, unlabeled A000055.
A001187 counts connected graphs, unlabeled A001349.
A006125 counts graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A014068 counts graphs with n vertices and n-1 edges, unordered A001433.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 02 2022
EXTENSIONS
Terms a(11) and beyond from Andrew Howroyd, Jan 01 2023
STATUS
approved
Number of unlabeled trees covering 2n nodes, half of which are leaves.
+10
3
0, 1, 2, 8, 32, 158, 833, 4755, 28389, 176542, 1131055, 7432876, 49873477, 340658595, 2362652648, 16605707901, 118082160358, 848399575321, 6152038125538, 44981009272740, 331344933928536, 2457372361637286, 18337490246234464, 137612955519565773, 1038076541372187991
OFFSET
1,3
FORMULA
a(n) = A055290(2*n, n). - Andrew Howroyd, Jan 01 2023
CROSSREFS
Left of central column of A055290.
The labeled version is the left of central column of A055314.
The rooted version is A185650.
For n+1 leaves we have A358107.
The labeled version is A358732.
A000272 counts trees, bisection A163395, unlabeled A000055.
A001187 counts connected graphs, unlabeled A001349.
A006125 counts graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A014068 counts graphs with n vertices and n-1 edges, unlabeled A001433.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 01 2023
EXTENSIONS
Terms a(12) and beyond from Andrew Howroyd, Jan 01 2023
STATUS
approved
Number of graphs with n nodes, n-2 edges and no isolated vertices.
(Formerly M2586)
+10
1
1, 1, 3, 6, 15, 33, 83, 202, 527, 1377, 3744, 10335, 29297, 84396, 248034, 740289, 2245094, 6904206, 21522973, 67936799, 217026480, 701159919, 2289925258, 7556363054, 25184139149, 84743377436, 287815771822, 986345040471, 3409869008578
OFFSET
4,3
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
W. L. Kocay, Some new methods in reconstruction theory, pp. 89 - 114 of Combinatorial Mathematics IX. Proc. Ninth Australian Conference (Brisbane, August 1981). Ed. E. J. Billington, S. Oates-Williams and A. P. Street. Lecture Notes Math., 952. Springer-Verlag, 1982.
FORMULA
a(n) = A001430(n) - A001433(n - 1). - Sean A. Irvine, Jun 05 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Vladeta Jovovic, Mar 02 2008
More terms from Sean A. Irvine, Jun 05 2017
STATUS
approved
Number of graphs with n nodes, n-1 edges and no isolated vertices.
(Formerly M1181)
+10
1
1, 1, 2, 4, 9, 20, 50, 124, 332, 895, 2513, 7172, 20994, 62366, 188696, 578717, 1799999, 5666257, 18047319, 58097540, 188953756, 620493315, 2056582095, 6877206111, 23195975865, 78891742748, 270505303760, 934890953041, 3256230606767
OFFSET
2,3
REFERENCES
W. L. Kocay, Some new methods in reconstruction theory, pp. 89 - 114 of Combinatorial Mathematics IX. Proc. Ninth Australian Conference (Brisbane, August 1981). Ed. E. J. Billington, S. Oates-Williams and A. P. Street. Lecture Notes Math., 952. Springer-Verlag, 1982.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
a(n) = A001433(n) - A001434(n - 1). - Sean A. Irvine, Jun 06 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Vladeta Jovovic, Mar 02 2008
More terms from Sean A. Irvine, Jun 06 2017
STATUS
approved
Number of graphs with n nodes having fewer than n edges.
+10
1
1, 2, 3, 7, 14, 33, 81, 215, 601, 1808, 5721, 19133, 67218, 247377, 950679, 3806360, 15837196, 68336348, 305196782, 1408294018, 6703197359, 32861879994, 165699114887, 858237346563, 4560774579700, 24839216194151, 138505159164086, 789982051646096, 4604866422703625
OFFSET
1,2
LINKS
MATHEMATICA
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
edges[v_, t_] := Product[g = GCD[v[[i]], v[[j]]]; t[v[[i]]*v[[j]]/g]^g, {i, 2, Length[v]}, {j, 1, i - 1}]*Product[c = v[[i]]; t[c]^Quotient[c - 1, 2]*If[OddQ[c], 1, t[c/2]], {i, 1, Length[v]}];
a[n_] := a[n] = Module[{s = O[x]^n}, Do[s += permcount[p]*edges[p, 1 + x^# + O[x]^n &], {p, IntegerPartitions[n]}]; SeriesCoefficient[s/(1-x), {x, 0, n - 1}]/n!];
Table[Print[n, " ", a[n]]; a[n], {n, 1, 30}] (* Jean-François Alcover, Jan 08 2021, after Andrew Howroyd *)
PROG
(PARI)
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
a(n)={my(s=O(x^n)); forpart(p=n, s+=permcount(p)*edges(p, i->1 + x^i + O(x^n))); polcoef(s/(1-x), n-1)/n!} \\ Andrew Howroyd, Oct 22 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Sigurd Kittilsen and Lars Tveito, Oct 07 2019
EXTENSIONS
Terms a(17) and beyond from Andrew Howroyd, Oct 22 2019
STATUS
approved
Number of graphs with n vertices and n-1 edges that can be gracefully labeled.
+10
0
1, 1, 1, 3, 5, 12, 36
OFFSET
1,4
COMMENTS
Hand calculated by grade 3 students up to term 6: (1,1,1,3,5,12...)
EXAMPLE
a(5) = 5: A001433 tells us that there are 6 simple graphs with 5 vertices and 4 edges. Only 5 of these can be labeled gracefully. The one that cannot is the triangular loop plus two connected nodes: ∆ / .
CROSSREFS
A001433 provides an upper bound. If the Graceful Tree Conjecture were true, A000055 would be a lower bound.
KEYWORD
more,nonn
AUTHOR
Gordon Hamilton, May 28 2014
STATUS
approved

Search completed in 0.014 seconds