Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a001745 -id:a001745
     Sort: relevance | references | number | modified | created      Format: long | short | data
Least positive integer whose decimal digits divide the plane into n+1 regions. Equivalently, least positive integer with n holes in its decimal digits.
+10
16
1, 4, 8, 48, 88, 488, 888, 4888, 8888, 48888, 88888, 488888, 888888, 4888888, 8888888, 48888888, 88888888, 488888888, 888888888, 4888888888, 8888888888, 48888888888, 88888888888, 488888888888, 888888888888, 4888888888888, 8888888888888, 48888888888888
OFFSET
0,2
COMMENTS
Leading zeros are not permitted. Variations are possible depending upon whether 4 is considered "holey" (if not, replace each "4" with a "6") and whether nonnegative integers are permitted (a(2) becomes 0). In each case, all terms after the first could be considered "wholly holey," as could all terms of A001743 and A001744, as each digit contains a hole (loop). The analogous sequence of bits for base 2 is simply A011557, the powers of 10, read instead as binary numbers, i.e., as powers of two.
LINKS
Brady Haran and N. J. A. Sloane, What Number Comes Next? (2018), Numberphile video.
Julia Witte Zimmerman, Denis Hudon, Kathryn Cramer, Jonathan St. Onge, Mikaela Fudolig, Milo Z. Trujillo, Christopher M. Danforth, and Peter Sheridan Dodds, A blind spot for large language models: Supradiegetic linguistic information, arXiv:2306.06794 [cs.CL], 2023.
FORMULA
a(n) = 10*a(n-2) + 8 for n >= 3.
From Chai Wah Wu, Dec 14 2016: (Start)
a(n) = a(n-1) + 10*a(n-2) - 10*a(n-3) for n > 4.
G.f.: (10*x^3 - 6*x^2 + 3*x + 1)/((x - 1)*(10*x^2 - 1)). (End)
EXAMPLE
From Jon E. Schoenfield, Nov 15 2014: (Start)
This sequence uses "holey" fours. So a(1)=4, because
. . . . . . . . . . . . . . . . . . . . . . . .
. . . .
. XXXX . . XX XX .
. XX XX . . XX XX .
. XX XX . . XX XX .
. XX XX . . XX XX .
. XX XX . . XX XX .
. XX XX . . XX XX .
. XX XX . . XX XX .
. XX XX . . XX XX .
. XXXXXXXXXXXXX . . XXXXXXXXXXXXX .
. XX . . XX .
. XX . . XX .
. XX . . XX .
. XX . . XX .
. XX . . XX .
. . . .
. "Holey" 4 . . "Non-holey" 4 .
. . . . . . . . . . . . . . . . . . . . . . . . (End)
MAPLE
a:= n-> `if`(n=0, 1, parse(cat(4*(irem(n, 2, 'q')), 8$q))):
seq(a(n), n=0..30); # Alois P. Heinz, Nov 01 2014
MATHEMATICA
LinearRecurrence[{1, 10, -10}, {1, 4, 8, 48}, 50]] (* Paolo Xausa, May 31 2023 *)
PROG
(Magma) I:=[1, 4, 8, 48]; [n le 4 select I[n] else 10*Self(n-2)+8: n in [1..30]]; // Vincenzo Librandi, Nov 17 2014
(PARI) A249572(n)=10^(n\2)*if(n%2, 45-(n>1)*5, 22)\45 \\ "(..., 9-(n>1), 4.4)\9" would be shorter but cause problems beyond realprecision. - M. F. Hasler, Jul 25 2015
CROSSREFS
The analogous sequence using 6 instead of 4 is A250256. - N. J. A. Sloane, Sep 27 2019
KEYWORD
nonn,base,easy
AUTHOR
Rick L. Shepherd, Nov 01 2014
EXTENSIONS
Offset corrected by Brady Haran, Nov 27 2018
STATUS
approved
Least positive integer whose decimal digits divide the plane into n regions (A249572 variant).
+10
7
1, 6, 8, 68, 88, 688, 888, 6888, 8888, 68888, 88888, 688888, 888888, 6888888, 8888888, 68888888, 88888888, 688888888, 888888888, 6888888888, 8888888888, 68888888888, 88888888888, 688888888888, 888888888888, 6888888888888, 8888888888888, 68888888888888
OFFSET
1,2
COMMENTS
Equivalently, with offset 0, least positive integer with n holes in its decimal digits. Leading zeros are not permitted. Variation of A249572 with the numeral "4" considered open at the top, as it is often handwritten. See also the comments in A249572.
For n > 2, a(n) + a(n+1) divides the plane into 2 regions. For n > 1, a(2n) - a(2n-1) divides the plane into n+1 regions. For n >= 1, a(2n+1) - a(2n) divides the plane into n regions. - Ivan N. Ianakiev, Feb 23 2015
LINKS
Brady Haran and N. J. A. Sloane, What Number Comes Next? (2018), Numberphile video
FORMULA
a(n) = 10*a(n-2) + 8 for n >= 4.
From Chai Wah Wu, Jul 12 2016: (Start)
a(n) = a(n-1) + 10*a(n-2) - 10*a(n-3) for n > 4.
G.f.: x*(10*x^3 - 8*x^2 + 5*x + 1)/((x - 1)*(10*x^2 - 1)). (End)
EXAMPLE
The integer 68, whose decimal digits have 3 holes, divides the plane into 4 regions. No smaller positive integer does this, so a(4) = 68.
MATHEMATICA
Join[{1, 6, 8}, RecurrenceTable[{a[1]==68, a[2]==88, a[n]==10 a[n-2] + 8}, a, {n, 20}]] (* Vincenzo Librandi, Nov 16 2014 *)
PROG
(Magma) I:=[1, 6, 8, 68]; [n le 4 select I[n] else 10*Self(n-2)+8: n in [1..30]]; // Vincenzo Librandi, Nov 15 2014
KEYWORD
nonn,base,easy
AUTHOR
Rick L. Shepherd, Nov 15 2014
STATUS
approved
Least nonnegative integer whose decimal digits divide the plane into n regions.
+10
2
1, 0, 8, 48, 88, 488, 888, 4888, 8888, 48888, 88888, 488888, 888888, 4888888, 8888888, 48888888, 88888888, 488888888, 888888888, 4888888888, 8888888888, 48888888888, 88888888888, 488888888888, 888888888888, 4888888888888, 8888888888888, 48888888888888
OFFSET
1,3
COMMENTS
Equivalently, with offset 0, least nonnegative integer with n holes in its decimal digits. Leading zeros are not permitted. Identical to A249572 except that a(2) = 0, not 4. See also the comments in A249572.
FORMULA
a(n) = 10*a(n-2) + 8 for n >= 5.
From Chai Wah Wu, Jul 12 2016: (Start)
a(n) = a(n-1) + 10*a(n-2) - 10*a(n-3) for n > 5.
G.f.: x*(-40*x^4 + 50*x^3 - 2*x^2 - x + 1)/((x - 1)*(10*x^2 - 1)). (End)
EXAMPLE
The integer 48, whose decimal digits have 3 holes, divides the plane into 4 regions. No smaller nonnegative integer does this, so a(4) = 48.
MATHEMATICA
Join[{1, 0, 8}, RecurrenceTable[{a[1]==48, a[2]==88, a[n]==10 a[n-2] + 8}, a, {n, 20}]] (* Vincenzo Librandi, Nov 16 2014 *)
PROG
(Magma) I:=[1, 0, 8, 48, 88]; [n le 5 select I[n] else 10*Self(n-2)+8: n in [1..30]]; // Vincenzo Librandi, Nov 15 2014
KEYWORD
nonn,base,easy
AUTHOR
Rick L. Shepherd, Nov 15 2014
STATUS
approved
Least nonnegative integer whose decimal digits divide the plane into n regions (A250257 variant).
+10
2
1, 0, 8, 68, 88, 688, 888, 6888, 8888, 68888, 88888, 688888, 888888, 6888888, 8888888, 68888888, 88888888, 688888888, 888888888, 6888888888, 8888888888, 68888888888, 88888888888, 688888888888, 888888888888, 6888888888888, 8888888888888, 68888888888888
OFFSET
1,3
COMMENTS
Equivalently, with offset 0, least nonnegative integer with n holes in its decimal digits. Leading zeros are not permitted. Variation of A250257 with the numeral "4" considered open at the top, as it is often handwritten. See also the comments in A249572.
FORMULA
a(n) = 10*a(n-2) + 8 for n >= 5.
a(n) = A250256(n), n<>2.
From Chai Wah Wu, Jul 12 2016: (Start)
a(n) = a(n-1) + 10*a(n-2) - 10*a(n-3) for n > 5.
G.f.: x*(-60*x^4 + 70*x^3 - 2*x^2 - x + 1)/((x - 1)*(10*x^2 - 1)). (End)
EXAMPLE
The integer 68, whose decimal digits have 3 holes, divides the plane into 4 regions. No smaller nonnegative integer does this, so a(4) = 68.
MATHEMATICA
Join[{1, 0, 8}, RecurrenceTable[{a[1]==68, a[2]==88, a[n]==10 a[n-2] + 8}, a, {n, 20}]] (* Vincenzo Librandi, Nov 16 2014 *)
PROG
(Magma) I:=[1, 0, 8, 68, 88]; [n le 5 select I[n] else 10*Self(n-2)+8: n in [1..40]]; // Vincenzo Librandi, Nov 16 2014
KEYWORD
nonn,base,easy
AUTHOR
Rick L. Shepherd, Nov 15 2014
STATUS
approved
Prime numbers whose decimal digits contain a total of two loops.
+10
0
83, 109, 149, 181, 199, 269, 281, 283, 349, 383, 401, 419, 439, 443, 461, 463, 467, 479, 491, 509, 569, 587, 599, 601, 607, 619, 641, 643, 647, 659, 661, 691, 709, 769, 787, 811, 821, 823, 827, 853, 857, 877, 907, 919, 929, 941, 947, 967, 991, 997, 1019, 1039
OFFSET
1,1
COMMENTS
Of the digits, 0 through 9, {0, 4, 6, 9} have one loop, 8 has two loops, and all the rest have none. - Robert G. Wilson v, Aug 20 2015
EXAMPLE
83 is the first term of the sequence. The digit 8 contains two closed curves.
MATHEMATICA
Select[Prime@ Range@ 200, 2 == Total[{ 1, 0, 0, 0, 1, 0, 1, 0, 2, 1}[[1 + IntegerDigits@ #]]]&] (* Giovanni Resta, Aug 19 2015 *)
KEYWORD
nonn,less,easy,base
AUTHOR
Altug Alkan, Aug 19 2015
EXTENSIONS
More terms from Giovanni Resta, Aug 19 2015
STATUS
approved

Search completed in 0.012 seconds