Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a001906 -id:a001906
Displaying 1-10 of 424 results found. page 1 2 3 4 5 6 7 8 9 10 ... 43
     Sort: relevance | references | number | modified | created      Format: long | short | data
A130259 Maximal index k of an even Fibonacci number (A001906) such that A001906(k) = Fib(2k) <= n (the 'lower' even Fibonacci Inverse). +20
10
0, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
Inverse of the even Fibonacci sequence (A001906), since a(A001906(n))=n (see A130260 for another version).
a(n)+1 is the number of even Fibonacci numbers (A001906) <=n.
LINKS
FORMULA
a(n) = floor(arcsinh(sqrt(5)*n/2)/(2*log(phi))), where phi=(1+sqrt(5))/2.
a(n) = A130260(n+1) - 1.
G.f.: g(x) = 1/(1-x)*Sum_{k>=1} x^Fibonacci(2*k).
a(n) = floor(1/2*log_phi(sqrt(5)*n+1)) for n>=0.
EXAMPLE
a(10)=3 because A001906(3)=8<=10, but A001906(4)=21>10.
MATHEMATICA
Table[Floor[1/2*Log[GoldenRatio, (Sqrt[5]*n + 1)]], {n, 0, 100}] (* G. C. Greubel, Sep 12 2018 *)
PROG
(PARI) vector(100, n, n--; floor(log((sqrt(5)*n+1))/(2*log((1+sqrt(5))/2) ))) \\ G. C. Greubel, Sep 12 2018
(Magma) [Floor(Log((Sqrt(5)*n+1))/(2*Log((1+Sqrt(5))/2)))): n in [0..100]]; // G. C. Greubel, Sep 12 2018
CROSSREFS
Cf. partial sums A130261. Other related sequences: A000045, A001519, A130233, A130237, A130239, A130255, A130260, A104160. Lucas inverse: A130241 - A130248.
KEYWORD
nonn
AUTHOR
Hieronymus Fischer, May 25 2007, Jul 02 2007
STATUS
approved
A125662 A convolution triangle of numbers based on A001906 (even-indexed Fibonacci numbers). +20
9
1, 3, 1, 8, 6, 1, 21, 25, 9, 1, 55, 90, 51, 12, 1, 144, 300, 234, 86, 15, 1, 377, 954, 951, 480, 130, 18, 1, 987, 2939, 3573, 2305, 855, 183, 21, 1, 2584, 8850, 12707, 10008, 4740, 1386, 245, 24, 1, 6765, 26195, 43398, 40426, 23373, 8715, 2100, 316, 27, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Subtriangle of the triangle given by [0,3,-1/3,1/3,0,0,0,0,0,...] DELTA [1,0,0,0,0,0,...] where DELTA is the operator defined in A084938. Unsigned version of A123965.
From Philippe Deléham, Feb 19 2012: (Start)
Riordan array (1/(1-3*x+x^2), x/(1-3*x+x^2)).
Equals A078812*A007318 as infinite lower triangular matrices.
Triangle of coefficients of Chebyshev's S(n,x+3) polynomials (exponents of x in increasing order). (End)
For 1 <= k <= n, T(n,k) equals the number of (n-1)-length words over {0,1,2,3} containing k-1 letters equal 3 and avoiding 01. - Milan Janjic, Dec 20 2016
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150)
Milan Janjić, Words and Linear Recurrences, J. Int. Seq. 21 (2018), #18.1.4.
FORMULA
T(n,k) = T(n-1,k-1) + 3*T(n-1,k) - T(n-2,k); T(0,0)=1; T(n,k)=0 if k < 0 or k > n.
Sum_{k=0..n} T(n, k) = A001353(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A000244(n+1).
G.f.: 1/(1-3*x+x^2-y*x). - Philippe Deléham, Feb 19 2012
From G. C. Greubel, Aug 20 2023: (Start)
T(n, k) = abs( [x^k]( ChebyshevU(n, (3-x)/2) ) ).
Sum_{k=0..n} (-1)^k*T(n, k) = A000027(n+1).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A000225(n). (End)
EXAMPLE
Triangle begins:
1;
3, 1;
8, 6, 1;
21, 25, 9, 1;
55, 90, 51, 12, 1;
...
Triangle [0,3,-1/3,1/3,0,0,0,...] DELTA [1,0,0,0,0,0,...] begins:
1;
0, 1;
0, 3, 1;
0, 8, 6, 1;
0, 21, 25, 9, 1;
0, 55, 90, 51, 12, 1;
...
MATHEMATICA
With[{n = 9}, DeleteCases[#, 0] & /@ CoefficientList[Series[1/(1 - 3 x + x^2 - y x), {x, 0, n}, {y, 0, n}], {x, y}]] // Flatten (* Michael De Vlieger, Apr 25 2018 *)
Table[Abs[CoefficientList[ChebyshevU[n, (x-3)/2], x]], {n, 0, 12}]//Flatten (* G. C. Greubel, Aug 20 2023 *)
PROG
(Magma)
m:=12;
R<x>:=PowerSeriesRing(Integers(), m+2);
A125662:= func< n, k | Abs( Coefficient(R!( Evaluate(ChebyshevU(n+1), (3-x)/2) ), k) ) >;
[A125662(n, k): k in [0..n], n in [0..m]]; // G. C. Greubel, Aug 20 2023
(SageMath)
def A125662(n, k): return abs( ( chebyshev_U(n, (3-x)/2) ).series(x, n+2).list()[k] )
flatten([[A125662(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Aug 20 2023
CROSSREFS
Diagonal sums: A000244(powers of 3).
Row sums: A001353 (n+1).
Diagonals: A001906(n+1), A001871.
Cf. Triangle of coefficients of Chebyshev's S(n,x+k) polynomials: A207824, A207823, A125662, A078812, A101950, A049310, A104562, A053122, A207815, A159764, A123967 for k = 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5 respectively.
KEYWORD
easy,nonn,tabl
AUTHOR
Philippe Deléham, Jan 28 2007
EXTENSIONS
a(45) corrected and a(51) added by Philippe Deléham, Feb 19 2012
STATUS
approved
A130260 Minimal index k of an even Fibonacci number A001906 such that A001906(k) = Fib(2k) >= n (the 'upper' even Fibonacci Inverse). +20
8
0, 1, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Inverse of the even Fibonacci sequence (A001906), since a(A001906(n))=n (see A130259 for another version).
a(n+1) is the number of even Fibonacci numbers (A001906) <=n.
LINKS
Dorin Andrica, Ovidiu Bagdasar, and George Cătălin Tųrcąs, On some new results for the generalised Lucas sequences, An. Şt. Univ. Ovidius Constanţa (Romania, 2021) Vol. 29, No. 1, 17-36.
FORMULA
a(n) = ceiling(arcsinh(sqrt(5)*n/2)/(2*log(phi))) for n>=0.
a(n) = ceiling(arccosh(sqrt(5)*n/2)/(2*log(phi))) for n>=1.
a(n) = ceiling(log_phi(sqrt(5)*n)/2)=ceiling(log_phi(sqrt(5)*n-1)/2) for n>=1, where phi=(1+sqrt(5))/2.
a(n) = A130259(n-1) + 1, for n>=1.
G.f.: g(x)=x/(1-x)*Sum_{k>=0} x^Fib(2*k).
EXAMPLE
a(10)=4 because A001906(4)=21>=10, but A001906(3)=8<10.
MATHEMATICA
Join[{0}, Table[Ceiling[Log[GoldenRatio, Sqrt[5]*n]/2], {n, 1, 100}]] (* G. C. Greubel, Sep 12 2018 *)
PROG
(PARI) for(n=0, 100, print1(if(n==0, 0, ceil(log(sqrt(5)*n)/(2*log((1+ sqrt(5))/2)))), ", ")) \\ G. C. Greubel, Sep 12 2018
(Magma) [0] cat [Ceiling(Log(Sqrt(5)*n)/(2*Log((1+ Sqrt(5))/2))): n in [1..100]]; // G. C. Greubel, Sep 12 2018
CROSSREFS
Cf. partial sums A130262. Other related sequences: A000045, A001519, A130234, A130237, A130239, A130256, A130259. Lucas inverse: A130241 - A130248.
KEYWORD
nonn
AUTHOR
Hieronymus Fischer, May 25 2007, May 28 2007, Jul 02 2007
STATUS
approved
A169690 Let S be the sequence Fibonacci(2n), n>0 (cf. A001906); sequence lists the differences S(j)-S(i) for i<j. +20
7
2, 5, 7, 13, 18, 20, 34, 47, 52, 54, 89, 123, 136, 141, 143, 233, 322, 356, 369, 374, 376, 610, 843, 932, 966, 979, 984, 986, 1597, 2207, 2440, 2529, 2563, 2576, 2581, 2583, 4181, 5778, 6388, 6621, 6710, 6744, 6757, 6762, 6764, 10946, 15127, 16724, 17334, 17567 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
The sequences S and T (see A169691) are a pair of sequences with the property that the differences between the terms of S are disjoint from the differences between the terms of T, thus answering a question posed by S. W. Golomb.
LINKS
MATHEMATICA
nn=30; With[{fib2=Fibonacci[Range[2, nn, 2]]}, Union[Flatten[Table[ fib2[[n]]- Take[ fib2, n-1], {n, nn/2}]]]] (* Harvey P. Dale, Jun 18 2012 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 14 2010
STATUS
approved
A340097 Odd composite integers m such that A001906(m-J(m,5)) == 0 (mod m) and gcd(m,5)=1, where J(m,5) is the Jacobi symbol. +20
6
21, 323, 329, 377, 451, 861, 1081, 1819, 1891, 2033, 2211, 3653, 3827, 4089, 4181, 5671, 5777, 6601, 6721, 8149, 8557, 10877, 11309, 11663, 13201, 13861, 13981, 14701, 15251, 17119, 17513, 17711, 17941, 18407, 19043, 19951, 20473, 23407, 25369, 25651, 25877, 27323, 27511 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
The generalized Lucas sequences of integer parameters (a,b) defined by U(m+2)=a*U(m+1)-b*U(m) and U(0)=0, U(1)=1, satisfy the identity
U(p-J(p,D)) == 0 (mod p) when p is prime, b=1 and D=a^2-4.
This sequence contains the odd composite integers with U(m-J(m,D)) == 0 (mod m).
For a=3 and b=1, we have D=5 and U(m) recovers A001906(m).
REFERENCES
D. Andrica and O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
LINKS
D. Andrica and O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math., 18, 47 (2021).
D. Andrica and O. Bagdasar, On generalized pseudoprimality of level k, Mathematics 2021, 9(8), 838.
Dorin Andrica, Vlad Crişan, and Fawzi Al-Thukair, On Fibonacci and Lucas sequences modulo a prime and primality testing, Arab Journal of Mathematical Sciences, 2018, 24(1), 9--15.
MATHEMATICA
Select[Range[3, 30000, 2], CoprimeQ[#, 5] && CompositeQ[#] && Divisible[ChebyshevU[# - JacobiSymbol[#, 5] - 1, 3/2], #] &]
CROSSREFS
Cf. A001906, A071904, A081264 (a=1, b=-1), A327653 (a=3,b=-1), A340095 (a=5, b=-1), A340096 (a=7, b=-1), A340098 (a=5, b=1), A340099 (a=7, b=1).
KEYWORD
nonn
AUTHOR
Ovidiu Bagdasar, Dec 28 2020
EXTENSIONS
Coprime condition added to definition by Georg Fischer, Jul 20 2022
STATUS
approved
A338007 Odd composite integers m such that A001906(m)^2 == 1 (mod m). +20
4
9, 21, 63, 99, 231, 323, 329, 369, 377, 423, 451, 861, 903, 1081, 1189, 1443, 1551, 1819, 1833, 1869, 1891, 2033, 2211, 2737, 2849, 2871, 2961, 3059, 3289, 3653, 3689, 3827, 4059, 4089, 4179, 4181, 4879, 5671, 5777, 6447, 6479, 6601, 6721, 6903, 7743 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
For a, b integers, the generalized Lucas sequence is defined by the relation U(n+2)=a*U(n+1)-b*U(n) and U(0)=0, U(1)=1.
This sequence satisfies the relation U(p)^2 == 1 for p prime and b=1,-1.
The composite numbers with this property may be called weak generalized Lucas pseudoprimes of parameters a and b.
The current sequence is defined for a=3 and b=1.
REFERENCES
D. Andrica and O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer (2020).
LINKS
Dorin Andrica and Ovidiu Bagdasar, On Generalized Lucas Pseudoprimality of Level k, Mathematics (2021) Vol. 9, 838.
D. Andrica and O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, preprint for Mediterr. J. Math. 18, 47 (2021).
MATHEMATICA
Select[Range[3, 8000, 2], CompositeQ[#] && Divisible[ChebyshevU[#-1, 3/2]*ChebyshevU[#-1, 3/2] - 1, #] &]
CROSSREFS
Cf. A338008 (a=4, b=1), A338009 (a=5, b=1), A338010 (a=6, b=1), A338011 (a=7, b=1).
KEYWORD
nonn
AUTHOR
Ovidiu Bagdasar, Oct 06 2020
STATUS
approved
A289803 p-INVERT of the even bisection (A001906) of the Fibonacci numbers, where p(S) = 1 - S - S^2. +20
3
1, 5, 23, 103, 456, 2009, 8833, 38803, 170399, 748176, 3284833, 14421533, 63314735, 277968871, 1220356440, 5357681369, 23521603225, 103265890987, 453363808127, 1990383615264, 8738295434881, 38363361811637, 168425013526727, 739429075564711, 3246283590352104 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A289780 for a guide to related sequences.
LINKS
Rigoberto Flórez, Javier González, Mateo Matijasevick, Cristhian Pardo, José Luis Ramírez, Lina Simbaqueba, and Fabio Velandia, Lattice paths in corridors and cyclic corridors, Contrib. Disc. Math. (2024) Vol. 19. No. 2, 36-55. See p. 11.
FORMULA
G.f.: (1 - 2 x + x^2)/(1 - 7 x + 13 x^2 - 7 x^3 + x^4).
a(n) = 7*a(n-1) - 13*a(n-2) + 7*a(n-3) - a(n-4).
MATHEMATICA
z = 60; s = x/(1 - 3*x + x^2); p = 1 - s - s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A001906 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289803 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Aug 12 2017
STATUS
approved
A337777 Even composite integers m such that U(m)^2 == 1 (mod m) and V(m) == 3 (mod m), where U(m)=A001906(m) and V(m)=A005248(m) are the m-th generalized Lucas and Pell-Lucas numbers of parameters a=3 and b=1, respectively. +20
3
4, 44, 836, 1364, 2204, 7676, 7964, 9164, 11476, 12524, 23804, 31124, 32642, 39556, 73124, 80476, 99644, 110564, 128876, 156484, 192676, 199924, 287804, 295196, 315524, 398924, 542242, 715604, 780044, 934876, 987524, 1050524, 1339516, 1390724, 1891124, 1996796 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
For a, b integers, the following sequences are defined:
generalized Lucas sequences by U(n+2)=a*U(n+1)-b*U(n) and U(0)=0, U(1)=1;
generalized Pell-Lucas sequences by V(n+2)=a*V(n+1)-b*V(n) and V(0)=2, V(1)=a.
These satisfy the identities U(p)^2 == 1 and V(p)==a (mod p) for p prime and b=1,-1.
These numbers may be called weak generalized Lucas-Bruckner pseudoprimes of parameters a and b. The current sequence is defined for a=3 and b=1.
LINKS
D. Andrica and O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, preprint for Mediterr. J. Math. 18, 47 (2021).
MATHEMATICA
Select[Range[2, 20000, 2], CompositeQ[#] && Divisible[LucasL[2#] - 3, #] && Divisible[ChebyshevU[#-1, 3/2]*ChebyshevU[#-1, 3/2] - 1, #] &]
CROSSREFS
Cf. A337626.
KEYWORD
nonn
AUTHOR
Ovidiu Bagdasar, Sep 20 2020
EXTENSIONS
More terms from Amiram Eldar, Sep 21 2020
STATUS
approved
A340122 Odd composite integers m such that A001906(2*m-J(m,5)) == J(m,5) (mod m), where J(m,5) is the Jacobi symbol. +20
3
9, 21, 27, 63, 81, 189, 243, 323, 329, 351, 377, 423, 451, 567, 729, 783, 861, 891, 963, 1081, 1701, 1743, 1819, 1891, 1967, 2033, 2187, 2211, 2871, 2889, 2961, 3321, 3653, 3807, 3827, 4089, 4181, 5103, 5229, 5671, 5777, 5901, 6561, 6601, 6721, 6741, 7587 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
The generalized Lucas sequences of integer parameters (a,b) defined by U(m+2)=a*U(m+1)-b*U(m) and U(0)=0, U(1)=1, satisfy U(2*p-J(p,D)) == J(p,D) (mod p) whenever p is prime, k is a positive integer, b=1 and D=a^2-4.
The composite integers m with the property U(k*m-J(m,D)) == J(m,D)*U(k-1) (mod m) are called generalized Lucas pseudoprimes of level k+ and parameter a. Here b=1, a=3, D=5 and k=2, while U(m) is A001906(m).
REFERENCES
D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021).
D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted).
LINKS
Dorin Andrica, Vlad Crişan, and Fawzi Al-Thukair, On Fibonacci and Lucas sequences modulo a prime and primality testing, Arab Journal of Mathematical Sciences, 2018, 24(1), 9--15.
MATHEMATICA
Select[Range[3, 10000, 2], CoprimeQ[#, 5] && CompositeQ[#] &&
Divisible[ ChebyshevU[2*# - JacobiSymbol[#, 5] - 1, 3/2] - JacobiSymbol[#, 5], #] &]
Select[Range[3, 10000, 2], CoprimeQ[#, 5] && CompositeQ[#]
&& Divisible[Fibonacci[2*(2*#-JacobiSymbol[#, 5]), 1] - JacobiSymbol[#, 5], #] &]
CROSSREFS
Cf. A001906, A071904, A340097 (a=3, b=1, k=1).
Cf. A340123 (a=5, b=1, k=2), A340124 (a=7, b=1, k=2).
KEYWORD
nonn
AUTHOR
Ovidiu Bagdasar, Dec 28 2020
STATUS
approved
A109794 a(2n) = A001906(n+1), a(2n+1) = A002878(n). +20
2
1, 1, 3, 4, 8, 11, 21, 29, 55, 76, 144, 199, 377, 521, 987, 1364, 2584, 3571, 6765, 9349, 17711, 24476, 46368, 64079, 121393, 167761, 317811, 439204, 832040, 1149851, 2178309, 3010349, 5702887, 7881196, 14930352, 20633239, 39088169 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Sequence relates bisections of Lucas and Fibonacci numbers (see also A098149).
Floretion Algebra Multiplication Program, FAMP code: 4jesleftforsumseq[ + .25'i + .25i' + .25'ii' + .25'jj' + .25'kk' + .25'jk' + .25'kj' + .25e], vesleftforsumseq = A000045, sumtype: (Y[15], *, inty*sum) (internal program code)
LINKS
FORMULA
G.f.: (1+x+x^3)/((1+x-x^2)*(1-x-x^2)).
a(n) = ((3/20)*sqrt(5) + 3/4)*(1/2 + (1/2)*sqrt(5))^n + (-(3/20)*sqrt(5) + 3/4)*(1/2 - (1/2)*sqrt(5))^n + (-(3/20)*sqrt(5) - 1/4)*(-1/2 + (1/2)*sqrt(5))^n + ((3/20)*sqrt(5) - 1/4) *(-1/2 - (1/2)*sqrt(5))^n.
a(n) = 3*a(n-2) - a(n-4), n >= 4; a(0) = 1, a(1) = 1, a(2) = 3, a(3) = 4. - Daniel Forgues, May 07 2011
MAPLE
a:= n-> (<<0|1>, <-1|3>>^iquo(n, 2, 'r'). <<1, 3+r>>)[1, 1]:
seq(a(n), n=0..50); # Alois P. Heinz, May 02 2011
MATHEMATICA
LinearRecurrence[{0, 3, 0, -1}, {1, 1, 3, 4}, 40] (* Robert G. Wilson v, Aug 06 2018 *)
CoefficientList[Series[(1+x+x^3)/((1+x-x^2)(1-x-x^2)), {x, 0, 40}], x] (* Harvey P. Dale, Aug 10 2021 *)
PROG
(GAP) a:=[1, 1, 3, 4];; for n in [5..40] do a[n]:=3*a[n-2]-a[n-4]; od; a; # Muniru A Asiru, Aug 09 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Creighton Dement, Aug 14 2005
STATUS
approved
page 1 2 3 4 5 6 7 8 9 10 ... 43

Search completed in 0.311 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 18 05:18 EDT 2024. Contains 375255 sequences. (Running on oeis4.)