Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a002109 -id:a002109
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numerator of the coefficient of z^(2n) in the Stirling-like asymptotic expansion of the hyperfactorial function A002109.
+20
10
1, 1, -1433, 1550887, -365236274341, 31170363588856607, -2626723351027654662151, 127061942835077684151157039, -5696145248370283185291966600124423, 254326794362835881966596504823903633657, -33203124408022060010631772664020406983485604379
OFFSET
0,3
REFERENCES
Mohammad K. Azarian, On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials, International Journal of Pure and Applied Mathematics, Vol. 36, No. 2, 2007, pp. 251-257. Mathematical Reviews, MR2312537. Zentralblatt MATH, Zbl 1133.11012.
LINKS
Jean-Christophe Pain, Series representations for the logarithm of the Glaisher-Kinkelin constant, arXiv:2304.07629 [math.NT], 2023.
Eric Weisstein's World of Mathematics, Hyperfactorial
FORMULA
From Seiichi Manyama, Aug 31 2018: (Start)
Let B_n be the Bernoulli number, and define the sequence {c_n} by the recurrence
c_0 = 1, c_n = (-1/(2*n)) * Sum_{k=0..n-1} B_{2*n-2*k+2}*c_k/((2*n-2*k+1)*(2*n-2*k+2)) for n > 0.
a(n) is the numerator of c_n. (End)
EXAMPLE
(Glaisher*(1 - 1433/(7257600*z^4) + 1/(720*z^2))*z^(1/12 + (z*(1 + z))/2))/e^(z^2/4).
From Seiichi Manyama, Aug 31 2018: (Start)
c_1 = -1/2 * (B_4*c_0/(3*4)) = 1/720, so a(1) = 1.
c_2 = -1/4 * (B_6*c_0/(5*6) + B_4*c_1/(3*4)) = -1433/7257600, so a(2) = -1433. (End)
CROSSREFS
KEYWORD
sign,frac
AUTHOR
Eric W. Weisstein, Aug 19 2008
EXTENSIONS
More terms from Seiichi Manyama, Aug 31 2018
STATUS
approved
Denominator of the coefficient of z^(2n) in the Stirling-like asymptotic expansion of the hyperfactorial function A002109.
+20
10
1, 720, 7257600, 15676416000, 3476402012160000, 162695614169088000000, 4919915372473221120000000, 60219764159072226508800000000, 507464726196802564122476544000000000, 3288371425755280615513648005120000000000
OFFSET
0,2
COMMENTS
In Glaisher (1878) equation (2) is "1^1.2^2.3^3 ... n^n = A n^(n^2/2 + n/2 + 1/12) e^(-n^4/4) (1 + 1/(720n^2) - 1433/(7257600n^4) + &c.)" - Michael Somos, Jun 24 2012
REFERENCES
Mohammad K. Azarian, On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials, International Journal of Pure and Applied Mathematics, Vol. 36, No. 2, 2007, pp. 251-257. Mathematical Reviews, MR2312537. Zentralblatt MATH, Zbl 1133.11012.
J. W. L. Glaisher, On The Product 1^1.2^2.3^3 ... n^n, Messenger of Mathematics, 7 (1878), pp. 43-47, see p. 43 eq. (2)
LINKS
Jean-Christophe Pain, Series representations for the logarithm of the Glaisher-Kinkelin constant, arXiv:2304.07629 [math.NT], 2023.
Eric Weisstein's World of Mathematics, Hyperfactorial
FORMULA
From Seiichi Manyama, Aug 31 2018: (Start)
Let B_n be the Bernoulli number, and define the sequence {c_n} by the recurrence
c_0 = 1, c_n = (-1/(2*n)) * Sum_{k=0..n-1} B_{2*n-2*k+2}*c_k/((2*n-2*k+1)*(2*n-2*k+2)) for n > 0.
a(n) is the denominator of c_n. (End)
EXAMPLE
(Glaisher*(1 - 1433/(7257600*z^4) + 1/(720*z^2))*z^(1/12 + (z*(1 + z))/2))/e^(z^2/4).
From Seiichi Manyama, Aug 31 2018: (Start)
c_1 = -1/2 * (B_4*c_0/(3*4)) = 1/720, so a(1) = 720.
c_2 = -1/4 * (B_6*c_0/(5*6) + B_4*c_1/(3*4)) = -1433/7257600, so a(2) = 7257600. (End)
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Eric W. Weisstein, Aug 19 2008
STATUS
approved
Exponent of 2 in the hyperfactorials: a(n) = A007814(A002109(n)).
+20
6
0, 0, 2, 2, 10, 10, 16, 16, 40, 40, 50, 50, 74, 74, 88, 88, 152, 152, 170, 170, 210, 210, 232, 232, 304, 304, 330, 330, 386, 386, 416, 416, 576, 576, 610, 610, 682, 682, 720, 720, 840, 840, 882, 882, 970, 970, 1016, 1016, 1208, 1208, 1258, 1258, 1362, 1362, 1416, 1416, 1584, 1584, 1642, 1642
OFFSET
0,3
COMMENTS
This is the function ord_2(D*_n) listed in the leftmost column of Table 7.1 in Lagarias & Mehta 2014 paper (on page 19).
LINKS
Jeffrey C. Lagarias and Harsh Mehta, Products of binomial coefficients and unreduced Farey fractions, International Journal of Number Theory, Vol. 12, No. 1 (2016), pp. 57-91; arXiv preprint, arXiv:1409.4145 [math.NT], 2014-2015.
Luca Onnis, On the p-adic valuation of a hyperfactorial, arXiv:2109.05616 [math.NT], 2021.
FORMULA
a(n) = 2 * A143157(floor(n/2)).
a(n) = A174605(n) + A187059(n). [Lagarias and Mehta theorem 4.1 for p=2]
a(n) = Sum_{i=1..n} i*v_2(i), where v_2(i) = A007814(i) is the exponent of the highest power of 2 dividing i. - Ridouane Oudra, Oct 17 2019
a(n) ~ (n^2+2n)/2 as n -> infinity. - Luca Onnis, Oct 17 2021
a(n) ~ ((A011371(n))^2)/2 as n -> infinity. - Luca Onnis, Nov 02 2021
From Kevin Ryde, Nov 03 2021: (Start)
a(2n) = a(2n+1) = 2*a(n) + n*(n+1).
a(n) = ( n^2 + Sum_{j=1..k} (e[j]-2*j+1) * 2^e[j] )/2, where binary expansion n = 2^e[1] + ... + 2^e[k] with ascending exponents e[1] < e[2] < ... < e[k] (A133457).
(End)
a(n) = Sum_{j=1..floor(log_2(n))} j*2^j*round(n/2^(j+1))^2, for n>=1. - Ridouane Oudra, Oct 01 2022
MAPLE
with(padic): seq(add(i*ordp(i, 2), i=1..n), n=0..60); # Ridouane Oudra, Oct 17 2019
MATHEMATICA
Table[i=0; Hyperfactorial@n//.x_/; EvenQ@x:>(i++; x/2); i, {n, 0, 60}] (* Giorgos Kalogeropoulos, Oct 28 2021 *)
PROG
(Scheme, two alternative implementations)
(define (A249152 n) (A007814 (A002109 n)))
(define (A249152 n) (* 2 (A143157 (floor->exact (/ n 2)))))
(Magma) [0] cat [&+[i*Valuation(i, 2):i in [1..n]]:n in [1..60]]; // Marius A. Burtea, Oct 18 2019
(PARI) a(n) = sum(i=1, n, i*valuation(i, 2)); \\ Michel Marcus, Sep 14 2021
(PARI) a(n) = my(v=binary(n), t=0); forstep(j=#v, 1, -1, if(v[j], v[j]=t--, t++)); (n^2 + fromdigits(v, 2))>>1; \\ Kevin Ryde, Nov 03 2021
(Python)
def A249152(n): return sum(i*(~i&i-1).bit_length() for i in range(2, n+1, 2)) # Chai Wah Wu, Jul 11 2022
CROSSREFS
Bisection: A249153.
Cf. A133457 (binary exponents).
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 25 2014
STATUS
approved
A000142 (n+1) * A002109(n), a product of factorials and hyperfactorials.
+20
5
1, 2, 24, 2592, 3317760, 62208000000, 20316635136000000, 133852981198454784000000, 20211123400293732996612096000000, 78302033109811407811828935756349440000000, 8613223642079254859301182933198438400000000000000000
OFFSET
0,2
COMMENTS
a(n+1) / a(n) = A055897(n+2);
row products of the triangle A245334.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..36
FORMULA
a(n) ~ A * sqrt(2*Pi) * n^(n^2/2+3*n/2+19/12) / exp(n*(n+4)/4), where A = 1.2824271291... is the Glaisher-Kinkelin constant (see A074962). - Vaclav Kotesovec, Nov 14 2014
MATHEMATICA
Table[(n+1)!*Hyperfactorial[n], {n, 0, 10}] (* Vaclav Kotesovec, Nov 14 2014 *)
Table[(n+1)*(n!)^(n+1)/BarnesG[n+1], {n, 0, 10}] (* Vaclav Kotesovec, Nov 14 2014 *)
PROG
(Haskell)
a240993 n = a000142 (n + 1) * a002109 n
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Aug 31 2014
STATUS
approved
Exponent of 2 in the hyperfactorial of 2n: a(n) = A007814(A002109(2n)).
+20
4
0, 2, 10, 16, 40, 50, 74, 88, 152, 170, 210, 232, 304, 330, 386, 416, 576, 610, 682, 720, 840, 882, 970, 1016, 1208, 1258, 1362, 1416, 1584, 1642, 1762, 1824, 2208, 2274, 2410, 2480, 2696, 2770, 2922, 3000, 3320, 3402, 3570, 3656, 3920, 4010, 4194, 4288, 4768, 4866, 5066, 5168, 5480, 5586, 5802, 5912
OFFSET
0,2
FORMULA
a(n) = A249152(2*n) = A007814(A002109(2*n)).
a(n) = 2*A143157(n).
a(n) ~ 2*n^2. - Amiram Eldar, Sep 10 2024
MATHEMATICA
Table[IntegerExponent[Hyperfactorial[2*n], 2], {n, 0, 55}] (* Amiram Eldar, Sep 10 2024 *)
PROG
(Scheme, two alternative versions)
(define (A249153 n) (* 2 (A143157 n)))
(define (A249153 n) (A249152 (+ n n)))
(Python)
from sympy import multiplicity
A249153_list, n = [0], 0
for i in range(2, 20002, 2):
n += multiplicity(2, i)*i
A249153_list.append(n) # Chai Wah Wu, Aug 21 2015
CROSSREFS
Bisection of A249152.
Cf. A002109, A007814, A143157, A069895 (first differences).
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 25 2014
STATUS
approved
Number of trailing zeros in A002109(n).
+20
3
0, 0, 0, 0, 0, 5, 5, 5, 5, 5, 15, 15, 15, 15, 15, 30, 30, 30, 30, 30, 50, 50, 50, 50, 50, 100, 100, 100, 100, 100, 130, 130, 130, 130, 130, 165, 165, 165, 165, 165, 205, 205, 205, 205, 205, 250, 250, 250, 250, 250, 350, 350, 350, 350, 350, 405, 405, 405, 405
OFFSET
0,6
LINKS
FORMULA
From Michel Marcus, Sep 14 2021: (Start)
a(n) = A122840(A002109(n)), but also,
a(n) = A112765(A002109(n)), see explanation in A002109; so
a(n) = Sum_{i=1..n} i*v_5(i), where v_5(i) = A112765(i) is the exponent of the highest power of 5 dividing i. After a similar formula in A249152. (End)
MATHEMATICA
(n=#; k=0; While[Mod[n, 10]==0, n=n/10; k++]; k)&/@Hyperfactorial@Range[0, 60] (* Giorgos Kalogeropoulos, Sep 14 2021 *)
PROG
(Python)
def a(n):
..s = 1
..for k in range(n+1):
....s *= k**k
..i = 1
..while not s % 10**i:
....i += 1
..return i-1
n = 1
while n < 100:
..print(a(n), end=', ')
..n += 1 # Derek Orr, Sep 04 2014
(Python)
from sympy import multiplicity
A246839, p5 = [0, 0, 0, 0, 0], 0
for n in range(5, 10**3, 5):
....p5 += multiplicity(5, n)*n
....A246839.extend([p5]*5)
# Chai Wah Wu, Sep 05 2014
(PARI) a(n) = sum(i=1, n, i*valuation(i, 5)); \\ Michel Marcus, Sep 14 2021
KEYWORD
nonn,base
AUTHOR
Chai Wah Wu, Sep 04 2014
STATUS
approved
a(n) = Product_{k=1..n} A002109(k).
+20
2
1, 1, 4, 432, 11943936, 1031956070400000, 4159895825138319360000000000, 13809882382682787973867537170432000000000000000, 769161257109634779902443718589603914508004789479014400000000000000000000, 16596916396875768196482032091931000424134701157007816971266990744831779993781534720000000000000000000000000
OFFSET
0,3
LINKS
FORMULA
From Vaclav Kotesovec, Nov 19 2023: (Start)
a(n) = BarnesG(n+2)^n / Product_{k=1..n+1} BarnesG(k)^2.
a(n) ~ A^(n+1) * n^(n^3/6 + n^2/2 + 5*n/12 + 1/12) / exp(5*n^3/36 + n^2/4 + n/12 + zeta(3)/(4*Pi^2)), where A is the Glaisher-Kinkelin constant A074962. (End)
MAPLE
seq(mul(mul(mul(k, j=1..k), k=1..m), m=1..n), n=0..9); # Zerinvary Lajos, Jun 01 2007
MATHEMATICA
Table[Product[Gamma[1 + k]^k/BarnesG[1 + k], {k, 1, n}], {n, 0, 10}] (* Vaclav Kotesovec, Nov 19 2023 *)
Table[BarnesG[n + 2]^n/Product[BarnesG[k]^2, {k, 1, n + 1}], {n, 0, 10}] (* Vaclav Kotesovec, Nov 19 2023 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, based on a suggestion from J. M. Bergot, Feb 06 2007
STATUS
approved
Possible number of trailing zeros in hyperfactorials (A002109).
+20
2
0, 5, 15, 30, 50, 100, 130, 165, 205, 250, 350, 405, 465, 530, 600, 750, 830, 915, 1005, 1100, 1300, 1405, 1515, 1630, 1750, 2125, 2255, 2390, 2530, 2675, 2975, 3130, 3290, 3455, 3625, 3975, 4155, 4340, 4530, 4725, 5125, 5330, 5540, 5755, 5975, 6425, 6655
OFFSET
1,2
COMMENTS
The number of trailing zeros in A002109 increases every 5 terms since the exponent of the factor 5 increases every 5 terms and the exponent of the factor 2 increases every 2 terms.
PROG
(Python)
from sympy import multiplicity
A246817, p5 = [0], 0
for n in range(5, 5*10**3, 5):
....p5 += multiplicity(5, n)*n
....A246817.append(p5) # Chai Wah Wu, Sep 05 2014
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Chai Wah Wu, Sep 03 2014
STATUS
approved
Logarithmic derivative of the hyperfactorials (A002109).
+20
1
1, 7, 313, 110143, 431860201, 24185951471887, 23238336572015738041, 445571476975584446962639039, 194201470505208674769594891331807753, 2157794122078406207016487628429579826176795887, 677208230450612019931822374477208301572175793625037599321
OFFSET
1,2
COMMENTS
Hyperfactorial A002109(n) = Product_{k=0..n} k^k.
REFERENCES
Mohammad K. Azarian, On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials, International Journal of Pure and Applied Mathematics, Vol. 36, No. 2, 2007, pp. 251-257. Mathematical Reviews, MR2312537. Zentralblatt MATH, Zbl 1133.11012.
FORMULA
a(n) ~ A * n^(n*(n+1)/2 + 13/12) / exp(n^2/4), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Jul 10 2015
EXAMPLE
L.g.f.: L(x) = x + 7*x^2/2 + 313*x^3/3 + 110143*x^4/4 + 431860201*x^5/5 +...
where
exp(L(x)) = 1 + x + 4*x^2 + 108*x^3 + 27648*x^4 + 86400000*x^5 + 4031078400000*x^6 +...+ n^n*(n-1)^(n-1)*(n-2)^(n-2)*...*3^3*2^2*1^1*0^0**x^n +...
MATHEMATICA
nmax=15; Rest[CoefficientList[Series[Log[Sum[Product[j^j, {j, 1, k}]*x^k, {k, 0, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]] (* Vaclav Kotesovec, Jul 10 2015 *)
PROG
(PARI) {a(n)=n*polcoeff(log(sum(k=0, n+1, prod(j=0, k, j^j)*x^k)+x*O(x^n)), n)}
for(n=1, 21, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 16 2012
STATUS
approved
Partial sums of hyperfactorials (A002109).
+20
1
1, 2, 6, 114, 27762, 86427762, 4031164827762, 3319770429936027762, 55696441261496986915227762, 21577941278638297470665013744027762, 215779412250996503370318565758665013744027762, 61564384586850833363801728392684283449726665013744027762
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Hyperfactorial
Eric Weisstein's World of Mathematics, Barnes G-Function
FORMULA
a(n) = Sum_{k = 0..n} A002109(k).
a(n) = Sum_{k = 0..n} (k!)^k/Barnes G-Function(k + 1).
EXAMPLE
a(0) = 1;
a(1) = 1 + 1^1 = 2;
a(2) = 1 + 1^1 + 1^1*2^2 = 6;
a(3) = 1 + 1^1 + 1^1*2^2 + 1^1*2^2*3^3 = 114;
a(4) = 1 + 1^1 + 1^1*2^2 + 1^1*2^2*3^3 + 1^1*2^2*3^3*4^4 = 27762, etc.
MATHEMATICA
Table[Sum[Hyperfactorial[k], {k, 0, n}], {n, 0, 11}]
Accumulate[Hyperfactorial[Range[0, 15]]] (* Harvey P. Dale, Sep 22 2021 *)
PROG
(PARI) a(n) = sum(k=0, n, prod(j=2, k, j^j)); \\ Altug Alkan, Nov 27 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 27 2015
STATUS
approved

Search completed in 0.046 seconds