Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a005266 -id:a005266
     Sort: relevance | references | number | modified | created      Format: long | short | data
Sylvester's sequence: a(n+1) = a(n)^2 - a(n) + 1, with a(0) = 2.
(Formerly M0865 N0331)
+10
108
2, 3, 7, 43, 1807, 3263443, 10650056950807, 113423713055421844361000443, 12864938683278671740537145998360961546653259485195807
Euclid-Mullin sequence: a(1) = 2, a(n+1) is smallest prime factor of 1 + Product_{k=1..n} a(k).
(Formerly M0863 N0329)
+10
101
2, 3, 7, 43, 13, 53, 5, 6221671, 38709183810571, 139, 2801, 11, 17, 5471, 52662739, 23003, 30693651606209, 37, 1741, 1313797957, 887, 71, 7127, 109, 23, 97, 159227, 643679794963466223081509857, 103, 1079990819, 9539, 3143065813, 29, 3847, 89, 19, 577, 223, 139703, 457, 9649, 61, 4357
Euclid-Mullin sequence: a(1) = 2, a(n+1) is the largest prime factor of 1 + Product_{k=1..n} a(k).
(Formerly M0864 N0330)
+10
53
2, 3, 7, 43, 139, 50207, 340999, 2365347734339, 4680225641471129, 1368845206580129, 889340324577880670089824574922371, 20766142440959799312827873190033784610984957267051218394040721
a(1)=3, b(n) = Product_{k=1..n} a(k), a(n+1) is the smallest prime factor of b(n)-1.
(Formerly M2246)
+10
47
3, 2, 5, 29, 11, 7, 13, 37, 32222189, 131, 136013303998782209, 31, 197, 19, 157, 17, 8609, 1831129, 35977, 508326079288931, 487, 10253, 1390043, 18122659735201507243, 25319167, 9512386441, 85577, 1031, 3650460767, 107, 41, 811, 15787, 89, 68168743, 4583, 239, 1283, 443, 902404933, 64775657, 2753, 23, 149287, 149749, 7895159, 79, 43, 1409, 184274081, 47, 569, 63843643
Euclid-Mullin sequence (A000945) with initial value a(1)=5 instead of a(1)=2.
+10
39
5, 2, 11, 3, 331, 19, 199, 53, 21888927391, 29833, 101, 71, 23, 311, 7, 72353, 13, 227, 96014559769, 5641, 41, 82107739003, 67, 169637539, 61, 29, 31319, 17, 97, 238591921, 313, 102065429, 157, 37, 595553520313, 244217, 241, 4773229353714971081083834237, 103
Euclid-Mullin sequence (A000945) with initial value a(1)=127 instead of a(1)=2.
+10
33
127, 2, 3, 7, 5, 149, 19, 41, 23899, 139, 43, 761, 281, 17, 53, 2551, 23, 20149, 100720363856036298033578901613089271, 31, 179, 11, 13, 523, 282995646721, 2871347, 83, 10744429, 1031, 427773048135533, 97, 78506876242349, 67
Primes congruent to 1 mod 6 generated recursively. Initial prime is 7. The next term is p(n) = Min_{p is prime; p divides 4Q^2+3; p mod 6 = 1}, where Q is the product of previous entries of the sequence.
+10
28
7, 199, 7761799, 487, 67, 103, 3562539697, 7251847, 13, 127, 5115369871402405003, 31, 697830431171707, 151, 3061, 229, 193, 5393552285540920774057256555028583857599359699, 709, 397, 37, 61, 46168741, 3127279, 181, 122268541
Primes of the form 8k+5 generated recursively: a(1)=5, a(n) = least prime p == 5 (mod 8) with p | 4+Q^2, where Q is the product of all previous terms in the sequence.
+10
25
5, 29, 1237, 32171803229, 829, 405565189, 14717, 39405395843265000967254638989319923697097319108505264560061, 282860648026692294583447078797184988636062145943222437, 53, 421, 13, 109, 4133, 6476791289161646286812333, 461, 34549, 453690033695798389561735541
Euclid-Mullin sequence (A000945) with initial value a(1)=8191 instead of a(1)=2.
+10
12
8191, 2, 3, 7, 53, 1399, 5, 19, 646843, 26945441, 109, 443, 90670999, 280460690293140589, 907, 16293787, 3655513, 499483, 131, 21067, 143797, 54540542259000816707816058313971443, 392963, 977, 11, 5021, 179, 439, 353, 34417238589462247, 1193114397863177, 13, 59, 31643, 79399, 73, 43, 16639867
Euclid-Mullin sequence (A000945) with initial value a(1)=11 instead of a(1)=2.
+10
5
11, 2, 23, 3, 7, 10627, 433, 17, 13, 10805892983887, 73, 6397, 19, 489407, 2753, 87491, 18618443, 5, 31, 113, 41, 10723, 35101153, 25243, 374399, 966011, 293821591198219762366057, 234947, 4729, 27953, 3256171, 331, 613, 67, 272646324430637, 34281113, 21050393332691947013, 61, 97

Search completed in 0.023 seconds