Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a006984 -id:a006984
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of inequivalent sublattices of index n in hexagonal lattice, where two sublattices are equivalent if they are related by a rotation or reflection preserving the hexagonal lattice.
(Formerly M0420)
+10
24
1, 1, 2, 3, 2, 3, 3, 5, 4, 4, 3, 8, 4, 5, 6, 9, 4, 8, 5, 10, 8, 7, 5, 15, 7, 8, 9, 13, 6, 14, 7, 15, 10, 10, 10, 20, 8, 11, 12, 20, 8, 18, 9, 17, 16, 13, 9, 28, 12, 17, 14, 20, 10, 22, 14, 25, 16, 16, 11, 34, 12, 17, 21, 27, 16, 26, 13, 24, 18, 26, 13, 40, 14
OFFSET
1,3
COMMENTS
The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.
From Andrey Zabolotskiy, Mar 10 2018: (Start)
If only primitive sublattices are considered, we get A003050.
Here only rotations and reflections preserving the parent hexagonal lattice are allowed. If reflections are not allowed, we get A145394. If any rotations and reflections are allowed, we get A300651.
In other words, the parent lattice of the sublattices under consideration has Patterson symmetry group p6mm, and two sublattices are considered equivalent if they are related via a symmetry from that group [Rutherford]. For other 2D Patterson groups, the analogous sequences are A000203 (p2), A069734 (p2mm), A145391 (c2mm), A145392 (p4), A145393 (p4mm), A145394 (p6).
Rutherford says at p. 161 that his sequence for p6mm differs from this sequence, but it seems that with the current definition and terms of this sequence, this actually is his p6mm sequence, and the sequence he thought to be this one is actually A300651. Also, he says that a(n) != A300651(n) only when A002324(n) > 2 (first time happens at n = 49), but actually these two sequences differ at other terms, too, for example, at n = 42 (see illustration). (End)
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
A. Altshuler, Construction and enumeration of regular maps on the torus, Discrete Math. 4 (1973), 201-217.
A. Altshuler, Construction and enumeration of regular maps on the torus, Discrete Math. 4 (1973), 201-217. [Annotated and corrected scanned copy]
M. Bernstein, N. J. A. Sloane and P. E. Wright, On Sublattices of the Hexagonal Lattice, Discrete Math. 170 (1997) 29-39 (Abstract, pdf, ps).
Amihay Hanany, Domenico Orlando, and Susanne Reffert, Sublattice counting and orbifolds, High Energ. Phys., 2010 (2010), 51, arXiv.org:1002.2981 [hep-th] (see Table 3).
Daejun Kim, Seok Hyeong Lee, and Seungjai Lee, Zeta functions enumerating subforms of quadratic forms, arXiv:2409.05625 [math.NT], 2024.
W. Kurth, Enumeration of Platonic maps on the torus, Discrete Math. 61 (1986), 71-83.
Andrey Zabolotskiy, Sublattices of the hexagonal lattice (illustrations for n = 1..7, 14)
Andrey Zabolotskiy, Coweight lattice A^*_n and lattice simplices, arXiv:2003.10251 [math.CO], 2020.
FORMULA
a(n) = Sum_{ m^2 | n } A003050(n/m^2).
a(n) = (A000203(n) + 2*A002324(n) + 3*A145390(n))/6. [Rutherford] - N. J. A. Sloane, Mar 13 2009
a(n) = Sum_{ d|n } A112689(d+1). - Andrey Zabolotskiy, Aug 29 2019
a(n) = Sum_{ d|n } floor(d/6) + 1 - 1*[d == 2 or 6 (mod 12)] + 1*[d == 4 (mod 12)]. [Kurth] - Brahadeesh Sankarnarayanan, Feb 24 2023
MATHEMATICA
max = 73; A145390 = Drop[ CoefficientList[ Series[ Sum[(1 + Cos[n*Pi/2])*x^n/(1 - x^n), {n, 1, max}], {x, 0, max}], x], 1]; A002324[n_] := (dn = Divisors[n]; Count[dn, _?(Mod[#, 3] == 1 & )] - Count[dn, _?(Mod[#, 3] == 2 & )]); a[n_] := (DivisorSigma[1, n] + 2 A002324[n] + 3*A145390[[n]])/6; Table[a[n], {n, 1, max}] (* Jean-François Alcover, Oct 11 2011, after given formula *)
KEYWORD
nonn,nice,easy,changed
STATUS
approved
Number of primitive sublattices of index n in hexagonal lattice: triples x,y,z from Z/nZ with x+y+z = 0, discarding any triple that can be obtained from another by multiplying by a unit and permuting.
(Formerly M0229)
+10
10
1, 1, 2, 2, 2, 3, 3, 4, 3, 4, 3, 6, 4, 5, 6, 6, 4, 7, 5, 8, 8, 7, 5, 12, 6, 8, 7, 10, 6, 14, 7, 10, 10, 10, 10, 14, 8, 11, 12, 16, 8, 18, 9, 14, 14, 13, 9, 20, 11, 16, 14, 16, 10, 19, 14, 20, 16, 16, 11, 28, 12, 17, 18, 18, 16, 26, 13, 20, 18, 26, 13, 28
OFFSET
1,3
COMMENTS
The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.
Also the number of triangles with vertices on points of the hexagonal lattice that have area equal to n/2. - Amihay Hanany, Oct 15 2009 [Here the area is measured in the units of the lattice unit cell area; since the number of the triangles of different shapes with the same half-integral area is infinite, the triangles are probably counted up to the equivalence relation defined in the Davey, Hanany and Rak-Kyeong Seong paper. Also, this comment probably belongs to A003051, not here. - Andrey Zabolotskiy, Mar 10 2018 and Jul 04 2019]
Also number of 2n-vertex connected cubic vertex-transitive graphs which are Cayley graphs for a dihedral group [Potočnik et al.]. - N. J. A. Sloane, Apr 19 2014
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
A. Altshuler, Construction and enumeration of regular maps on the torus, Discrete Math. 4 (1973), 201-217.
A. Altshuler, Construction and enumeration of regular maps on the torus, Discrete Math. 4 (1973), 201-217. [Annotated and corrected scanned copy]
M. Bernstein, N. J. A. Sloane and P. E. Wright, On Sublattices of the Hexagonal Lattice, Discrete Math. 170 (1997) 29-39 (Abstract, pdf, ps).
J. Davey, A. Hanany and Rak-Kyeong Seong, Counting Orbifolds, arXiv:1002.3609 [hep-th], 2010.
Primož Potočnik, Pablo Spiga and Gabriel Verret, A census of small connected cubic vertex-transitive graphs (See the sub-page Table.html, column headed "Dihedrants"). - N. J. A. Sloane, Apr 19 2014
FORMULA
Let n = Product_{i=1..w} p_i^e_i. Then a(n) = (1/6)*n*Product_{i=1..w} (1 + 1/p_i) + (C_1)/3 + 2^(w-2+C_2),
where C_1 = 0 if 2|n or 9|n, = Product_{i=1..w, p_i > 3} (1 + Legendre(p_i, 3)) otherwise,
and C_2 = 2 if n == 0 (mod 8), 1 if n == 1, 3, 4, 5, 7 (mod 8), 0 if n == 2, 6 (mod 8).
EXAMPLE
For n = 6 the 3 primitive triples are 510, 411, 321.
MATHEMATICA
Join[{1}, Table[p=Transpose[FactorInteger[n]][[1]]; If[Mod[n, 2]==0 || Mod[n, 9]==0, c1=0, c1=Product[(1+JacobiSymbol[p[[i]], 3]), {i, Length[p]}]]; c2={2, 1, 0, 1, 1, 1, 0, 1}[[1+Mod[n, 8]]]; n*Product[(1+1/p[[i]]), {i, Length[p]}]/6+c1/3+2^(Length[p]-2+c2), {n, 2, 100}]] (* T. D. Noe, Oct 18 2009 *)
CROSSREFS
Cf. A003051 (not only primitive sublattices), A001615, A006984, A007997, A048259, A054345, A154272, A157235.
KEYWORD
nonn,nice
STATUS
approved

Search completed in 0.008 seconds