Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a007324 -id:a007324
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of witnesses for Solovay-Strassen primality test of 2*n+1.
+10
3
2, 4, 6, 2, 10, 12, 2, 16, 18, 2, 22, 4, 2, 28, 30, 2, 2, 36, 2, 40, 42, 4, 46, 6, 2, 52, 2, 2, 58, 60, 2, 8, 66, 2, 70, 72, 2, 2, 78, 2, 82, 8, 2, 88, 18, 2, 2, 96, 2, 100, 102, 8, 106, 108, 2, 112, 2, 4, 2, 10, 2, 4, 126, 2, 130, 18, 2, 136, 138, 2, 2, 8, 2
OFFSET
1,1
COMMENTS
Number of bases b, 1 <= b <= 2*n, such that GCD(b, 2*n+1) = 1 and b^n == (b / 2*n+1) (mod 2*n+1), where (b / 2*n+1) is a Jacobi symbol.
If 2*n+1 is composite then it is the number of bases b, 1 <= b <= 2*n, in which 2*n+1 is an Euler-Jacobi pseudoprime.
Differs from A071294 from n = 22.
REFERENCES
Paulo Ribenboim, The Little Book of Bigger Primes, 2nd ed., Springer-Verlag, New York, 2004, p. 96.
LINKS
Louis Monier, Evaluation and comparison of two efficient primality testing algorithms, Theoretical Computer Science, Vol. 11 (1980), pp. 97-108.
Eric Weisstein's World of Mathematics, Euler-Jacobi Pseudoprime.
FORMULA
a(n) = delta(n) * Product_{p|n} gcd((n-1)/2, p-1), where delta(n) = 2 if nu(n-1, 2) = min_{p|n} nu(p-1, 2), 1/2 if there is a prime p|n such that nu(p, n) is odd and nu(p-1, 2) < nu(n-1, 2), and 1 otherwise, where nu(n, p) is the exponent of the highest power of p dividing n.
a(p) = p-1 for prime p.
EXAMPLE
a(1) = 2 since there are 2 bases b in which 2*1 + 1 = 3 is an Euler-Jacobi pseudoprime: b = 1 since GCD(1, 3) = 1 and 1^1 == (1 / 3) == 1 (mod 3), and b = 2 since GCD(2, 3) = 1 and 2^1 == (2 / 3) == -1 (mod 3).
MATHEMATICA
v[n_] := Min[IntegerExponent[#, 2]& /@ (FactorInteger[n][[;; , 1]] - 1)];
pQ[n_, p_] := OddQ[IntegerExponent[n, p]] && IntegerExponent[p-1, 2] < IntegerExponent[n-1, 2];
psQ[n_] := AnyTrue[FactorInteger[n][[;; , 1]], pQ[n, #] &];
delta[n_] := If[IntegerExponent[n-1, 2] == v[n], 2, If[psQ[n], 1/2, 1]];
a[n_] := delta[n] * Module[{p = FactorInteger[n][[;; , 1]]}, Product[GCD[(n-1)/2, p[[k]]-1], {k, 1, Length[p]}]];
Table[a[n], {n, 3, 147, 2}]
KEYWORD
nonn
AUTHOR
Amiram Eldar, Nov 20 2019
STATUS
approved
Least Euler pseudoprime to base 2 through base prime(n).
+10
1
341, 1729, 1729, 46657, 46657, 162401, 399001, 399001, 399001, 399001, 488881, 3057601, 3057601, 3828001, 3828001, 3828001, 3828001, 3828001, 3828001, 3828001, 3828001, 3828001, 3828001, 3828001, 3828001, 17098369, 17098369, 17098369, 17098369, 17236801, 17236801
OFFSET
1,1
COMMENTS
a(n) is coprime to A002110(n).
LINKS
Eric Weisstein's World of Mathematics, Euler Pseudoprime.
PROG
(PARI) a(n) = my(b, m, p=factorback(primes(n))); forcomposite(k=9, oo, if(gcd(k, p)==1, b=2; while((m=Mod(b, k)^(k\2)) == 1 || m == k-1, b++); if(b>prime(n), return(k))));
CROSSREFS
KEYWORD
nonn
AUTHOR
Jinyuan Wang, Jun 04 2022
STATUS
approved
Smallest Euler-Jacobi pseudoprime to all natural bases up to prime(n) - 1 that is not a base prime(n) Euler-Jacobi pseudoprime.
+10
0
9, 561, 10585, 1729, 488881, 399001, 2433601, 1857241, 6189121, 549538081, 50201089, 14469841, 86566959361, 311963097601, 369838909441, 31929487861441, 6389476833601, 8493512837546881, 31585234281457921, 10120721237827201, 289980482095624321, 525025434548260801, 91230634325542321
OFFSET
1,1
COMMENTS
An Euler-Jacobi pseudoprime to the base b is an odd composite number k such that gcd(b, k) = 1 and the Jacobi symbol (.,.) satisfies b^((k-1)/2) == (b,k) (mod k).
a(n) is coprime to A002110(n-1).
a(24) > 2^64. - Daniel Suteu, Jun 05 2022
LINKS
Eric Weisstein's World of Mathematics, Euler-Jacobi Pseudoprime.
PROG
(PARI) a(n) = my(b, p=factorback(primes(n-1))); forcomposite(k=9, oo, if(gcd(k, p)==1, b=2; while(Mod(b, k)^(k\2) == kronecker(b, k), b++); if(b==prime(n), return(k))));
CROSSREFS
KEYWORD
nonn
AUTHOR
Jinyuan Wang, Jun 03 2022
EXTENSIONS
a(13)-a(23) from Daniel Suteu, Jun 05 2022
STATUS
approved

Search completed in 0.008 seconds