Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a007713 -id:a007713
Displaying 1-10 of 16 results found. page 1 2
     Sort: relevance | references | number | modified | created      Format: long | short | data
A000293 a(n) = number of solid (i.e., three-dimensional) partitions of n.
(Formerly M3392 N1371)
+10
37
1, 1, 4, 10, 26, 59, 140, 307, 684, 1464, 3122, 6500, 13426, 27248, 54804, 108802, 214071, 416849, 805124, 1541637, 2930329, 5528733, 10362312, 19295226, 35713454, 65715094, 120256653, 218893580, 396418699, 714399381, 1281403841, 2287986987, 4067428375, 7200210523, 12693890803, 22290727268, 38993410516, 67959010130, 118016656268, 204233654229, 352245710866, 605538866862, 1037668522922, 1772700955975, 3019333854177, 5127694484375, 8683676638832, 14665233966068, 24700752691832, 41495176877972, 69531305679518 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
An ordinary partition is a row of numbers in nondecreasing order whose sum is n. Here the numbers are in a three-dimensional pile, nondecreasing in the x-, y- and z-directions.
Finding a g.f. for this sequence is an unsolved problem. At first it was thought that it was given by A000294.
Equals A000041 convolved with A002836: [1, 0, 2, 5, 12, 24, 56, 113, ...] and row sums of the convolution triangle A161564. - Gary W. Adamson, Jun 13 2009
REFERENCES
P. A. MacMahon, Memoir on the theory of partitions of numbers - Part VI, Phil. Trans. Roal Soc., 211 (1912), 345-373.
P. A. MacMahon, Combinatory Analysis. Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 2, p 332.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Suresh Govindarajan, Table of n, a(n) for n = 0..72
Alimzhan Amanov and Damir Yeliussizov, MacMahon's statistics on higher-dimensional partitions, arXiv:2009.00592 [math.CO], 2020. Mentions this sequence.
A. O. L. Atkin, P. Bratley, I. G. McDonald and J. K. S. McKay, Some computations for m-dimensional partitions, Proc. Camb. Phil. Soc., 63 (1967), 1097-1100. [Annotated scanned copy], DOI
Srivatsan Balakrishnan, Suresh Govindarajan and Naveen S. Prabhakar, On the asymptotics of higher-dimensional partitions, arXiv:1105.6231 [cond-mat.stat-mech], 2011.
P. Bratley and J. K. S. McKay, Algorithm 313: Multi-dimensional partition generator, Comm. ACM, 10 (Issue 10, 1967), p. 666.
Nicolas Destainville and Suresh Govindarajan, Estimating the asymptotics of solid partitions, arXiv:1406.5605 [cond-mat.stat-mech], 2014; J. Stat. Phys. 158 (2015) 950-967.
Suresh Govindarajan, Solid Partitions Project Dec 14, 2010.
D. E. Knuth, A Note on Solid Partitions, Math. Comp. 24, 955-961, 1970.
P. A. MacMahon, Combinatory analysis.
Ville Mustonen and R. Rajesh, Numerical Estimation of the Asymptotic Behaviour of Solid Partitions of an Integer, arXiv:cond-mat/0303607 [cond-mat.stat-mech], 2003; J. Phys. A 36 (2003), no. 24, 6651-6659.
S. P. Naveen, On The Asymptotics of Some Counting Problems in Physics, Thesis, Bachelor of Technology, Department of Physics, Indian Institute of Technology, Madras, May 2011.
Eric Weisstein's World of Mathematics, Solid Partition
Wikipedia, Solid partition
Damir Yeliussizov, Bounds on the number of higher-dimensional partitions, arXiv:2302.04799 [math.CO], 2023.
EXAMPLE
Examples for n=2 and n=3.
a(2) = 4: 2; 11 where the first 1 is at the origin and the second 1 is in the x, y or z direction.
a(3) = 10: 3; 21 where the 2 is at the origin and the 1 is on the x, y or z axis; 111 (a row of 3 ones on the x, y or z axes); and three 1's with one 1 at the origin and the other two 1's on two of the three axes.
From Gus Wiseman, Jan 22 2019: (Start)
The a(1) = 1 through a(4) = 26 solid partitions, represented as chains of chains of integer partitions:
((1)) ((2)) ((3)) ((4))
((11)) ((21)) ((22))
((1)(1)) ((111)) ((31))
((1))((1)) ((2)(1)) ((211))
((11)(1)) ((1111))
((2))((1)) ((2)(2))
((1)(1)(1)) ((3)(1))
((11))((1)) ((21)(1))
((1)(1))((1)) ((11)(11))
((1))((1))((1)) ((111)(1))
((2))((2))
((3))((1))
((2)(1)(1))
((21))((1))
((11))((11))
((11)(1)(1))
((111))((1))
((2)(1))((1))
((1)(1)(1)(1))
((11)(1))((1))
((2))((1))((1))
((1)(1))((1)(1))
((1)(1)(1))((1))
((11))((1))((1))
((1)(1))((1))((1))
((1))((1))((1))((1))
(End)
MATHEMATICA
planePtns[n_]:=Join@@Table[Select[Tuples[IntegerPartitions/@ptn], And@@(GreaterEqual@@@Transpose[PadRight[#]])&], {ptn, IntegerPartitions[n]}];
solidPtns[n_]:=Join@@Table[Select[Tuples[planePtns/@y], And@@(GreaterEqual@@@Transpose[Join@@@(PadRight[#, {n, n}]&/@#)])&], {y, IntegerPartitions[n]}];
Table[Length[solidPtns[n]], {n, 10}] (* Gus Wiseman, Jan 23 2019 *)
CROSSREFS
Cf. A000041, A000219 (2-dim), A000294, A000334 (4-dim), A000390 (5-dim), A002835, A002836, A005980, A037452 (inverse Euler trans.), A080207, A007326, A000416 (6-dim), A000427 (7-dim), A179855 (8-dim).
Cf. A161564. - Gary W. Adamson, Jun 13 2009
KEYWORD
nonn,nice
AUTHOR
EXTENSIONS
More terms from the Mustonen and Rajesh article, May 02 2003
a(51)-a(62) found by Suresh Govindarajan and students, Dec 14 2010
a(63)-a(68) found by Suresh Govindarajan and students, Jun 01 2011
a(69)-a(72) found by Suresh Govindarajan and Srivatsan Balakrishnan, Jan 03 2013
STATUS
approved
A290353 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the k-th Euler transform of the sequence with g.f. 1+x. +10
22
1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 3, 3, 1, 0, 1, 1, 4, 6, 5, 1, 0, 1, 1, 5, 10, 14, 7, 1, 0, 1, 1, 6, 15, 30, 27, 11, 1, 0, 1, 1, 7, 21, 55, 75, 58, 15, 1, 0, 1, 1, 8, 28, 91, 170, 206, 111, 22, 1, 0, 1, 1, 9, 36, 140, 336, 571, 518, 223, 30, 1, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,13
COMMENTS
A(n,k) is the number of unlabeled rooted trees with exactly n leaves, all in level k. A(3,3) = 6:
: o o o o o o
: | | | / \ / \ /|\
: o o o o o o o o o o
: | / \ /|\ | | ( ) | | | |
: o o o o o o o o o o o o o o
: /|\ ( ) | | | | ( ) | | | | | | |
: o o o o o o o o o o o o o o o o o o
LINKS
B. A. Huberman and T. Hogg, Complexity and adaptation, Evolution, games and learning (Los Alamos, N.M., 1985). Phys. D 22 (1986), no. 1-3, 376-384.
FORMULA
G.f. of column k=0: 1+x, of column k>0: Product_{j>0} 1/(1-x^j)^A(j,k-1).
EXAMPLE
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, 8, ...
0, 1, 3, 6, 10, 15, 21, 28, 36, ...
0, 1, 5, 14, 30, 55, 91, 140, 204, ...
0, 1, 7, 27, 75, 170, 336, 602, 1002, ...
0, 1, 11, 58, 206, 571, 1337, 2772, 5244, ...
0, 1, 15, 111, 518, 1789, 5026, 12166, 26328, ...
0, 1, 22, 223, 1344, 5727, 19193, 54046, 133476, ...
MAPLE
with(numtheory):
A:= proc(n, k) option remember; `if`(n<2, 1, `if`(k=0, 0, add(
add(A(d, k-1)*d, d=divisors(j))*A(n-j, k), j=1..n)/n))
end:
seq(seq(A(n, d-n), n=0..d), d=0..14);
MATHEMATICA
A[n_, k_]:=b[n, k]=If[n<2, 1, If[k==0, 0, Sum[Sum[A[d, k - 1]*d, {d, Divisors[j]}] A[n - j, k], {j, n}]/n]]; Table[A[n, d - n], {d, 0, 14}, {n, 0, d}]//Flatten (* Indranil Ghosh, Jul 30 2017, after Maple code *)
CROSSREFS
Main diagonal gives A290354.
Cf. A144150.
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jul 28 2017
STATUS
approved
A050338 Number of ways of factoring n with 2 levels of parentheses. +10
10
1, 1, 1, 4, 1, 4, 1, 10, 4, 4, 1, 16, 1, 4, 4, 30, 1, 16, 1, 16, 4, 4, 1, 54, 4, 4, 10, 16, 1, 22, 1, 75, 4, 4, 4, 74, 1, 4, 4, 54, 1, 22, 1, 16, 16, 4, 1, 176, 4, 16, 4, 16, 1, 54, 4, 54, 4, 4, 1, 102, 1, 4, 16, 206, 4, 22, 1, 16, 4, 22, 1, 267, 1, 4, 16, 16, 4, 22, 1, 176, 30, 4, 1, 102 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
COMMENTS
a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3,1).
LINKS
FORMULA
Dirichlet g.f.: Product_{n>=2}(1/(1-1/n^s)^A050336(n)).
a(n) = A050339(A101296(n)). - R. J. Mathar, May 26 2017
EXAMPLE
4 = ((4)) = ((2*2)) = ((2)*(2)) = ((2))*((2)).
CROSSREFS
KEYWORD
nonn
AUTHOR
Christian G. Bower, Oct 15 1999
STATUS
approved
A330459 Number of set partitions of set-systems with total sum n. +10
10
1, 1, 1, 4, 6, 11, 26, 42, 78, 148, 280, 481, 867, 1569, 2742, 4933, 8493, 14857, 25925, 44877, 77022, 132511, 226449, 385396, 657314, 1111115, 1875708, 3157379, 5309439, 8885889, 14861478, 24760339, 41162971, 68328959, 113099231, 186926116, 308230044 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
Number of sets of disjoint nonempty sets of nonempty sets of positive integers with total sum n.
LINKS
FORMULA
a(n) = Sum_k A330462(n,k) * A000110(k).
EXAMPLE
The a(6) = 26 partitions:
((6)) ((15)) ((123)) ((1)(2)(12))
((24)) ((1)(14)) ((1))((2)(12))
((1)(5)) ((1)(23)) ((12))((1)(2))
((2)(4)) ((2)(13)) ((2))((1)(12))
((1))((5)) ((3)(12)) ((1))((2))((12))
((2))((4)) ((1))((14))
((1))((23))
((1)(2)(3))
((2))((13))
((3))((12))
((1))((2)(3))
((2))((1)(3))
((3))((1)(2))
((1))((2))((3))
MATHEMATICA
ppl[n_, k_]:=Switch[k, 0, {n}, 1, IntegerPartitions[n], _, Join@@Table[Union[Sort/@Tuples[ppl[#, k-1]&/@ptn]], {ptn, IntegerPartitions[n]}]];
Table[Length[Select[ppl[n, 3], And[UnsameQ@@Join@@#, And@@UnsameQ@@@Join@@#]&]], {n, 0, 10}]
PROG
(PARI) \\ here L is A000009 and BellP is A000110 as series.
L(n)={eta(x^2 + O(x*x^n))/eta(x + O(x*x^n))}
BellP(n)={serlaplace(exp( exp(x + O(x*x^n)) - 1))}
seq(n)={my(c=L(n), b=BellP(n), v=Vec(prod(k=1, n, (1 + x^k*y + O(x*x^n))^polcoef(c, k)))); vector(#v, n, my(r=v[n]); sum(k=0, n-1, polcoeff(b, k)*polcoef(r, k)))} \\ Andrew Howroyd, Dec 29 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 17 2019
EXTENSIONS
Terms a(18) and beyond from Andrew Howroyd, Dec 29 2019
STATUS
approved
A330452 Number of set partitions of strict multiset partitions of integer partitions of n. +10
8
1, 1, 2, 7, 13, 34, 81, 175, 403, 890, 1977, 4262, 9356, 19963, 42573, 90865, 191206, 401803, 837898, 1744231, 3607504, 7436628, 15254309, 31185686, 63552725, 128963236, 260933000, 526140540, 1057927323, 2120500885, 4239012067, 8449746787, 16799938614 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Number of sets of disjoint nonempty sets of nonempty multisets of positive integers with total sum n.
LINKS
FORMULA
a(n) = Sum_{0 <= k <= n} A330463(n,k) * A000110(k).
EXAMPLE
The a(4) = 13 partitions:
((4)) ((22)) ((31)) ((211)) ((1111))
((1)(3)) ((1)(21)) ((1)(111))
((1))((3)) ((2)(11)) ((1))((111))
((1))((21))
((2))((11))
MATHEMATICA
ppl[n_, k_]:=Switch[k, 0, {n}, 1, IntegerPartitions[n], _, Join@@Table[Union[Sort/@Tuples[ppl[#, k-1]&/@ptn]], {ptn, IntegerPartitions[n]}]];
Table[Length[Select[ppl[n, 3], UnsameQ@@Join@@#&]], {n, 0, 10}]
PROG
(PARI) \\ here BellP is A000110 as series.
BellP(n)={serlaplace(exp( exp(x + O(x*x^n)) - 1))}
seq(n)={my(b=BellP(n), v=Vec(prod(k=1, n, (1 + x^k*y + O(x*x^n))^numbpart(k)))); vector(#v, n, my(r=v[n]); sum(k=0, n-1, polcoeff(b, k)*polcoef(r, k)))} \\ Andrew Howroyd, Dec 29 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 16 2019
EXTENSIONS
Terms a(18) and beyond from Andrew Howroyd, Dec 29 2019
STATUS
approved
A330461 Array read by antidiagonals where A(n,k) is the number of multiset partitions with k levels that are strict at all levels and have total sum n. +10
5
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 3, 4, 4, 1, 1, 1, 1, 4, 7, 7, 5, 1, 1, 1, 1, 5, 12, 14, 11, 6, 1, 1, 1, 1, 6, 19, 29, 25, 16, 7, 1, 1, 1, 1, 8, 30, 57, 60, 41, 22, 8, 1, 1, 1, 1, 10, 49, 110, 141, 111, 63, 29, 9, 1, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,12
LINKS
FORMULA
Column k is the k-th weigh transform of the all-ones sequence. The weigh transform of a sequence b has generating function Product_{i > 0} (1 + x^i)^b(i).
EXAMPLE
Array begins:
k=0 k=1 k=2 k=3 k=4 k=5 k=6
-----------------------------
n=0: 1 1 1 1 1 1 1
n=1: 1 1 1 1 1 1 1
n=2: 1 1 1 1 1 1 1
n=3: 1 2 3 4 5 6 7
n=4: 1 2 4 7 11 16 22
n=5: 1 3 7 14 25 41 63
n=6: 1 4 12 29 60 111 189
For example, the A(5,3) = 14 partitions are:
{{5}} {{1}}{{4}}
{{14}} {{2}}{{3}}
{{23}} {{1}}{{13}}
{{1}{4}} {{2}}{{12}}
{{2}{3}} {{1}}{{1}{3}}
{{1}{13}} {{2}}{{1}{2}}
{{2}{12}} {{1}}{{1}{12}}
MATHEMATICA
spl[n_, 0]:={n};
spl[n_, k_]:=Select[Join@@Table[Union[Sort/@Tuples[spl[#, k-1]&/@ptn]], {ptn, IntegerPartitions[n]}], UnsameQ@@#&];
Table[Length[spl[n-k, k]], {n, 0, 10}, {k, 0, n}]
PROG
(PARI)
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
M(n, k=n)={my(L=List(), v=vector(n, i, 1)); listput(L, concat([1], v)); for(j=1, k, v=WeighT(v); listput(L, concat([1], v))); Mat(Col(L))~}
{ my(A=M(7)); for(i=1, #A, print(A[i, ])) } \\ Andrew Howroyd, Dec 31 2019
CROSSREFS
Columns are A000012 (k = 0), A000009 (k = 1), A050342 (k = 2), A050343 (k = 3), A050344 (k = 4).
The non-strict version is A290353.
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Dec 18 2019
STATUS
approved
A055885 Euler transform applied twice to partition triangle A008284. +10
4
1, 1, 3, 1, 3, 6, 1, 6, 9, 14, 1, 6, 18, 23, 27, 1, 9, 27, 54, 57, 58, 1, 9, 39, 87, 140, 131, 111, 1, 12, 51, 150, 259, 353, 295, 223, 1, 12, 69, 210, 470, 702, 832, 637, 424, 1, 15, 84, 314, 749, 1379, 1803, 1917, 1350, 817, 1, 15, 105, 416, 1176, 2352, 3730, 4403, 4245, 2789, 1527 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,3
LINKS
N. J. A. Sloane, Transforms
EXAMPLE
1;
1, 3;
1, 3, 6;
1, 6, 9, 14;
1, 6, 18, 23, 27;
...
CROSSREFS
Row sums give A007713.
Main diagonal gives A001970.
KEYWORD
nonn,tabl
AUTHOR
Christian G. Bower, Jun 09 2000
STATUS
approved
A055886 Euler transform applied three times to partition triangle A008284. +10
4
1, 1, 4, 1, 4, 10, 1, 8, 16, 30, 1, 8, 32, 54, 75, 1, 12, 48, 128, 176, 206, 1, 12, 70, 210, 443, 535, 518, 1, 16, 92, 362, 842, 1485, 1585, 1344, 1, 16, 124, 516, 1544, 3075, 4676, 4527, 3357, 1, 20, 152, 770, 2500, 6133, 10622, 14336, 12664, 8429, 1, 20, 190, 1030, 3952, 10718, 22524, 34918, 42426, 34631, 20759 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,3
LINKS
N. J. A. Sloane, Transforms
EXAMPLE
1;
1, 4;
1, 4, 10;
1, 8, 16, 30;
1, 8, 32, 54, 75;
...
CROSSREFS
Row sums give A007714.
Main diagonal gives A007713.
KEYWORD
nonn,tabl
AUTHOR
Christian G. Bower, Jun 09 2000
STATUS
approved
A330472 Triangle read by rows where T(n,k) is the number of non-isomorphic k-element multisets of nonempty multisets of nonempty multisets (all finite). +10
3
1, 0, 1, 0, 4, 2, 0, 10, 8, 3, 0, 33, 48, 18, 5, 0, 91, 204, 118, 32, 7, 0, 298, 959, 743, 266, 58, 11, 0, 910, 4193, 4334, 1927, 519, 94, 15, 0, 3017, 18947, 25305, 13992, 4407, 966, 154, 22, 0, 9945, 84798, 145033, 97947, 36410, 9023, 1679, 236, 30 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,5
LINKS
EXAMPLE
Triangle begins:
1
0 1
0 4 2
0 10 8 3
0 33 48 18 5
0 91 204 118 32 7
0 298 959 743 266 58 11
For example, row n = 3 counts the following multiset partitions:
{{111}} {{1}}{{11}} {{1}}{{1}}{{1}}
{{112}} {{1}}{{12}} {{1}}{{1}}{{2}}
{{123}} {{1}}{{23}} {{1}}{{2}}{{3}}
{{1}{11}} {{2}}{{11}}
{{1}{12}} {{1}}{{1}{1}}
{{1}{23}} {{1}}{{1}{2}}
{{2}{11}} {{1}}{{2}{3}}
{{1}{1}{1}} {{2}}{{1}{1}}
{{1}{1}{2}}
{{1}{2}{3}}
PROG
(PARI) \\ See links in A339645 for combinatorial species functions.
ColGf(k, n)={my(A=symGroupSeries(n)); OgfSeries(sCartProd(sExp(A), sSubstOp(polcoef(A, k, x)*x^k + O(x*x^n), sExp(A)) ))}
M(n, m=n)={Mat(vector(m+1, k, Col(ColGf(k-1, n), -(n+1))))}
{ my(A=M(10)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Jan 17 2023
CROSSREFS
Row sums are A318566.
Column k = 1 is A007716 (for n > 0).
Column k = n is A000041.
Partitions of partitions of partitions are A007713.
Twice-factorizations are A050336.
If this is the 3-dimensional version, the 2-dimensional version is A317533.
See A330473 for a variation.
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Dec 19 2019
EXTENSIONS
Terms a(21) and beyond from Andrew Howroyd, Jan 17 2023
STATUS
approved
A330473 Regular triangle where T(n,k) is the number of non-isomorphic multiset partitions of k-element multiset partitions of multisets of size n. +10
2
1, 0, 1, 0, 2, 4, 0, 3, 8, 10, 0, 5, 28, 38, 33, 0, 7, 56, 146, 152, 91, 0, 11, 138, 474, 786, 628, 298, 0, 15, 268, 1388, 3117, 3808, 2486, 910, 0, 22, 570, 3843, 11830, 19147, 18395, 9986, 3017, 0, 30, 1072, 10094, 40438, 87081, 110164, 86388, 39889, 9945 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
As an alternative description, T(n,k) is the number of non-isomorphic multisets of nonempty multisets of nonempty multisets with n leaves whose multiset union consists of k multisets.
LINKS
EXAMPLE
Triangle begins:
1
0 1
0 2 4
0 3 8 10
0 5 28 38 33
0 7 56 146 152 91
0 11 138 474 786 628 298
For example, row n = 3 counts the following multiset partitions:
{{111}} {{1}{11}} {{1}{1}{1}}
{{112}} {{1}{12}} {{1}{1}{2}}
{{123}} {{1}{23}} {{1}{2}{3}}
{{2}{11}} {{1}}{{1}{1}}
{{1}}{{11}} {{1}}{{1}{2}}
{{1}}{{12}} {{1}}{{2}{3}}
{{1}}{{23}} {{2}}{{1}{1}}
{{2}}{{11}} {{1}}{{1}}{{1}}
{{1}}{{1}}{{2}}
{{1}}{{2}}{{3}}
PROG
(PARI) \\ See links in A339645 for combinatorial species functions.
ColGf(k, n)={my(A=symGroupSeries(n)); OgfSeries(sCartProd(sExp(A), sSubstOp(polcoef(sExp(A), k, x)*x^k + O(x*x^n), A) ))}
M(n, m=n)={Mat(vector(m+1, k, Col(ColGf(k-1, n), -(n+1))))}
{ my(A=M(10)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Jan 18 2023
CROSSREFS
Row sums are A318566.
Column k = 1 is A000041 (for n > 0).
Column k = n is A007716.
Partitions of partitions of partitions are A007713.
Twice-factorizations are A050336.
The 2-dimensional version is A317533.
See A330472 for a variation.
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Dec 20 2019
EXTENSIONS
Terms a(36) and beyond from Andrew Howroyd, Jan 18 2023
STATUS
approved
page 1 2

Search completed in 0.011 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 18 09:18 EDT 2024. Contains 375264 sequences. (Running on oeis4.)