Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a009102 -id:a009102
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle T(n,k) of rencontres numbers (number of permutations of n elements with k fixed points).
+10
115
1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 9, 8, 6, 0, 1, 44, 45, 20, 10, 0, 1, 265, 264, 135, 40, 15, 0, 1, 1854, 1855, 924, 315, 70, 21, 0, 1, 14833, 14832, 7420, 2464, 630, 112, 28, 0, 1, 133496, 133497, 66744, 22260, 5544, 1134, 168, 36, 0, 1, 1334961, 1334960, 667485, 222480, 55650, 11088, 1890, 240, 45, 0, 1
OFFSET
0,7
COMMENTS
This is a binomial convolution triangle (Sheffer triangle) of the Appell type: (exp(-x)/(1-x),x), i.e., the e.g.f. of column k is (exp(-x)/(1-x))*(x^k/k!). See the e.g.f. given by V. Jovovic below. - Wolfdieter Lang, Jan 21 2008
The formula T(n,k) = binomial(n,k)*A000166(n-k), with the derangements numbers (subfactorials) A000166 (see also the Charalambides reference) shows the Appell type of this triangle. - Wolfdieter Lang, Jan 21 2008
T(n,k) is the number of permutations of {1,2,...,n} having k pairs of consecutive right-to-left minima (0 is considered a right-to-left minimum for each permutation). Example: T(4,2)=6 because we have 1243, 1423, 4123, 1324, 3124 and 2134; for example, 1324 has right-to-left minima in positions 0-1,3-4 and 2134 has right-to-left minima in positions 0,2-3-4, the consecutive ones being joined by "-". - Emeric Deutsch, Mar 29 2008
T is an example of the group of matrices outlined in the table in A132382--the associated matrix for the sequence aC(0,1). - Tom Copeland, Sep 10 2008
A refinement of this triangle is given by A036039. - Tom Copeland, Nov 06 2012
This triangle equals (A211229(2*n,2*k)) n,k >= 0. - Peter Bala, Dec 17 2014
REFERENCES
Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, p. 173, Table 5.2 (without row n=0 and column k=0).
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 194.
Arnold Kaufmann, Introduction à la combinatorique en vue des applications, Dunod, Paris, 1968. See p. 92.
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 65.
LINKS
Alois P. Heinz, Rows n = 0..150, flattened (first 51 rows from T. D. Noe)
Taha Akbari, Prove using combinatorics Sum_{k=0..n} (k-1)^2 D_n(k)=n!, Mathematics Stack Exchange, Jun 06 2017
Paul Barry, General Eulerian Polynomials as Moments Using Exponential Riordan Arrays, Journal of Integer Sequences, 16 (2013), #13.9.6.
Stefano Capparelli, Margherita Maria Ferrari, Emanuele Munarini, and Norma Zagaglia Salvi, A Generalization of the "Problème des Rencontres", J. Int. Seq. 21 (2018), #18.2.8.
Bhadrachalam Chitturi and Krishnaveni K S, Adjacencies in Permutations, arXiv preprint arXiv:1601.04469 [cs.DM], 2016. See Table 1.
S. K. Das and N. Deo, Rencontres graphs: a family of bipartite graphs, Fib. Quart., Vol. 25, No. 3, August 1987, 250-262.
Robert W. Donley Jr, Binomial arrays and generalized Vandermonde identities, arXiv:1905.01525 [math.CO], 2019.
I. Kaplansky, Symbolic solution of certain problems in permutations, Bull. Amer. Math. Soc., 50 (1944), 906-914.
J. Liese and J. Remmel, Q-analogues of the number of permutations with k-excedances, PU. M. A. Vol. 21 (2010), No. 2, pp. 285-320 (see E_{n,0}(x) in Table 1 p. 291).
L. Takacs, On the "problème des ménages", Discr. Math. 36 (3) (1981) 289-297, Table 2.
Wikipedia, Rencontres numbers.
FORMULA
T(n, k) = T(n-1, k)*n + binomial(n, k)*(-1)^(n-k) = T(n, k-1)/k + binomial(n, k)*(-1)^(n-k)/(n-k+1) = T(n-1, k-1)*n/k = T(n-k, 0)*binomial(n, k) = A000166(n-k)*binomial(n,k) [with T(0, 0) = 1]; so T(n, n) = 1, T(n, n-1) = 0, T(n, n-2) = n*(n-1)/2 for n >= 0.
Sum_{k=0..n} T(n, k) = Sum_{k=0..n} k * T(n, k) = n! for all n > 0, n, k integers. - Wouter Meeussen, May 29 2001
From Vladeta Jovovic, Aug 12 2002: (Start)
O.g.f. for k-th column: (1/k!)*Sum_{i>=k} i!*x^i/(1+x)^(i+1).
O.g.f. for k-th row: k!*Sum_{i=0..k} (-1)^i/i!*(1-x)^i. (End)
E.g.f.: exp((y-1)*x)/(1-x). - Vladeta Jovovic, Aug 18 2002
E.g.f. for number of permutations with exactly k fixed points is x^k/(k!*exp(x)*(1-x)). - Vladeta Jovovic, Aug 25 2002
Sum_{k=0..n} T(n, k)*x^k is the permanent of the n X n matrix with x's on the diagonal and 1's elsewhere; for x = 0, 1, 2, 3, 4, 5, 6 see A000166, A000142, A000522, A010842, A053486, A053487, A080954. - Philippe Deléham, Dec 12 2003; for x = 1+i see A009551 and A009102. - John M. Campbell, Oct 11 2011
T(n, k) = Sum_{j=0..n} A008290(n, j)*k^(n-j) is the permanent of the n X n matrix with 1's on the diagonal and k's elsewhere; for k = 0, 1, 2 see A000012, A000142, A000354. - Philippe Deléham, Dec 13 2003
T(n,k) = Sum_{j=0..n} (-1)^(j-k)*binomial(j,k)*n!/j!. - Paul Barry, May 25 2006
T(n,k) = (n!/k!)*Sum_{j=0..n-k} ((-1)^j)/j!, 0 <= k <= n. From the Appell type of the triangle and the subfactorial formula.
T(n,0) = n*Sum_{j=0..n-1} (j/(j+1))*T(n-1,j), T(0,0)=1. From the z-sequence of this Sheffer triangle z(j)=j/(j+1) with e.g.f. (1-exp(x)*(1-x))/x. See the W. Lang link under A006232 for Sheffer a- and z-sequences. - Wolfdieter Lang, Jan 21 2008
T(n,k) = (n/k)*T(n-1,k-1) for k >= 1. See above. From the a-sequence of this Sheffer triangle a(0)=1, a(n)=0, n >= 1 with e.g.f. 1. See the W. Lang link under A006232 for Sheffer a- and z-sequences. - Wolfdieter Lang, Jan 21 2008
From Henk P. J. van Wijk, Oct 29 2012: (Start)
T(n,k) = T(n-1,k)*(n-1-k) + T(n-1,k+1)*(k+1) for k=0 and
T(n,k) = T(n-1,k-1) + T(n-1,k)*(n-1-k) + T(n-1,k+1)*(k+1) for k>=1.
(End)
T(n,k) = A098825(n,n-k). - Reinhard Zumkeller, Dec 16 2013
Sum_{k=0..n} k^2 * T(n, k) = 2*n! if n > 1. - Michael Somos, Jun 06 2017
From Tom Copeland, Jul 26 2017: (Start)
The lowering and raising operators of this Appell sequence of polynomials P(n,x) are L = d/dx and R = x + d/dL log[exp(-L)/(1-L)] = x-1 + 1/(1-L) = x + L + L^2 - ... such that L P(n,x) = n P(n-1,x) and R P(n,x) = P(n+1,x).
P(n,x) = (1-L)^(-1) exp(-L) x^n = (1+L+L^2+...)(x-1)^n = n! Sum_{k=0..n} (x-1)^k / k!.
The formalism of A133314 applies to the pair of entries A008290 and A055137.
The polynomials of this pair P_n(x) and Q_n(x) are umbral compositional inverses; i.e., P_n(Q.(x)) = x^n = Q_n(P.(x)), where, e.g., (Q.(x))^n = Q_n(x).
For more on the infinitesimal generator, noted by Bala below, see A238385. (End)
Sum_{k=0..n} k^m * T(n,k) = A000110(m)*n! if n >= m. - Zhujun Zhang, May 24 2019
Sum_{k=0..n} (k+1) * T(n,k) = A098558(n). - Alois P. Heinz, Mar 11 2022
From Alois P. Heinz, May 20 2023: (Start)
Sum_{k=0..n} (-1)^k * T(n,k) = A000023(n).
Sum_{k=0..n} (-1)^k * k * T(n,k) = A335111(n). (End)
T(n,k) = A145224(n,k)+A145225(n,k), refined by even and odd perms. - R. J. Mathar, Jul 06 2023
EXAMPLE
exp((y-1)*x)/(1-x) = 1 + y*x + (1/2!)*(1+y^2)*x^2 + (1/3!)*(2 + 3*y + y^3)*x^3 + (1/4!)*(9 + 8*y + 6*y^2 + y^4)*x^4 + (1/5!)*(44 + 45*y + 20*y^2 + 10*y^3 + y^5)*x^5 + ...
Triangle begins:
1
0 1
1 0 1
2 3 0 1
9 8 6 0 1
44 45 20 10 0 1
265 264 135 40 15 0 1
1854 1855 924 315 70 21 0 1
14833 14832 7420 2464 630 112 28 0 1
133496 133497 66744 22260 5544 1134 168 36 0 1
...
From Peter Bala, Feb 13 2017: (Start)
The infinitesimal generator has integer entries given by binomial(n,k)*(n-k-1)! for n >= 2 and 0 <= k <= n-2 and begins
0
0 0
1 0 0
2 3 0 0
6 8 6 0 0
24 30 20 10 0 0
...
It is essentially A238363 (unsigned and omitting the main diagonal), A211603 (with different offset) and appears to be A092271, again without the main diagonal. (End)
MAPLE
T:= proc(n, k) T(n, k):= `if`(k=0, `if`(n<2, 1-n, (n-1)*
(T(n-1, 0)+T(n-2, 0))), binomial(n, k)*T(n-k, 0))
end:
seq(seq(T(n, k), k=0..n), n=0..12); # Alois P. Heinz, Mar 15 2013
MATHEMATICA
a[0] = 1; a[1] = 0; a[n_] := Round[n!/E] /; n >= 1 size = 8; Table[Binomial[n, k]a[n - k], {n, 0, size}, {k, 0, n}] // TableForm (* Harlan J. Brothers, Mar 19 2007 *)
T[n_, k_] := Subfactorial[n-k]*Binomial[n, k]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 12 2017 *)
T[n_, k_] := If[n<1, Boole[n==0 && k==0], T[n, k] = T[n-1, k-1] + T[n-1, k]*(n-1-k) + T[n-1, k+1]*(k+1)]; (* Michael Somos, Sep 13 2024 *)
PROG
(PARI) {T(n, k) = if(k<0 || k>n, 0, n!/k! * sum(i=0, n-k, (-1)^i/i!))}; /* Michael Somos, Apr 26 2000 */
(Haskell)
a008290 n k = a008290_tabl !! n !! k
a008290_row n = a008290_tabl !! n
a008290_tabl = map reverse a098825_tabl
-- Reinhard Zumkeller, Dec 16 2013
CROSSREFS
Mirror of triangle A098825.
Cf. A080955.
Cf. A000012, A000142 (row sums), A000354.
Cf. A170942. Sub-triangle of A211229.
T(2n,n) gives A281262.
KEYWORD
nonn,tabl,nice
EXTENSIONS
Comments and more terms from Michael Somos, Apr 26 2000 and Christian G. Bower, Apr 26 2000
STATUS
approved
Expansion of sin(x)/(1-x).
+10
8
0, 1, 2, 5, 20, 101, 606, 4241, 33928, 305353, 3053530, 33588829, 403065948, 5239857325, 73358002550, 1100370038249, 17605920611984, 299300650403729, 5387411707267122, 102360822438075317, 2047216448761506340
OFFSET
0,3
COMMENTS
a(n) equals the imaginary part of the permanent of the n X n matrix with (1+i)'s along the main diagonal, and 1's everywhere else. - John M. Campbell, Jul 10 2011
LINKS
Eric Weisstein's MathWorld, Incomplete Gamma Function.
FORMULA
a(n) = round(n!*sin(1)), n>=1. - Vladeta Jovovic, Aug 11 2002
a(n) = n! * Sum_{k=0..floor(n/2)} (-1)^k/(2k-1)!, n>0. - Ralf Stephan, Apr 16 2004
a(n) = n*a(n-1) - a(n-2) +(n-2)*a(n-3). - Vaclav Kotesovec, Oct 07 2012
From Vladimir Reshetnikov, Oct 27 2015: (Start)
a(n) = Im(i^n*hypergeom([1,-n], [], i)).
a(n) = n!*sin(1)-cos(Pi*n/2)*hypergeom([1], [n/2+1,(n+3)/2], -1/4)/(n+1) + sin(Pi*n/2)*hypergeom([1], [n/2+2,(n+3)/2], -1/4)/(n^2+3*n+2).
a(n) = Im(Gamma(n+1, i)*exp(i)) = (Gamma(n+1, i)*exp(i)-Gamma(n+1, -i)*exp(-i))/(2*i), where Gamma(a, x) is the upper incomplete Gamma function, i=sqrt(-1).
Gamma(n+1, i) = exp(-i)*((-1)^n*A009102(n) + a(n)*i). (End)
MAPLE
restart: G(x):=sin(x)/(1-x): f[0]:=G(x): for n from 1 to 21 do f[n]:=diff(f[n-1], x) od: x:=0: seq(f[n], n=0..20); # Zerinvary Lajos, Apr 03 2009
MATHEMATICA
Table[n!*SeriesCoefficient[Sin[x]/(1-x), {x, 0, n}], {n, 0, 20}] (* corrected by Vaclav Kotesovec, Oct 07 2012 *)
With[{nn=30}, CoefficientList[Series[Sin[x]/(1-x), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Apr 17 2013 *)
Round@Table[Im[Gamma[n+1, I] E^I], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 27 2015 *)
PROG
(PARI) a(n) = round(n!*sin(1))
(Magma) I:=[1, 2, 5]; [0] cat [n le 3 select I[n] else n*Self(n-1)-Self(n-2)+(n-2)*Self(n-3): n in [1..30]]; // G. C. Greubel, Jan 19 2018
CROSSREFS
Cf. A009102, A000142, A000166, A000522, A000023, A053486, A010844 (incomplete Gamma function values at other points).
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Benoit Cloitre, Aug 13 2002
STATUS
approved
a(n) = n!*Sum_{k=0..n} Fibonacci(k-1)/k!, where Fibonacci(-1) = 1, Fibonacci(n) = A000045(n) for n>=0.
+10
5
1, 1, 3, 10, 42, 213, 1283, 8989, 71925, 647346, 6473494, 71208489, 854501957, 11108525585, 155519358423, 2332790376722, 37324646028162, 634518982479741, 11421341684636935, 217005492008104349, 4340109840162091161, 91142306643403921146, 2005130746154886276158
OFFSET
0,3
LINKS
Eric Weisstein's MathWorld, Incomplete Gamma Function.
Eric Weisstein's MathWorld, Fibonacci Number.
Eric Weisstein's MathWorld, Golden Ratio.
FORMULA
a(n) = (Gamma(n+1, 1-phi)*exp(1-phi)*phi+Gamma(n+1, phi)*exp(phi)/phi)/sqrt(5), where Gamma(a, x) is the upper incomplete Gamma function, phi=(1+sqrt(5))/2.
a(n) = (phi^(n-1)*hypergeom([1,-n], [], 1-phi]-(-phi)^(1-n)*hypergeom([1,-n], [], phi))/sqrt(5).
Gamma(n+1, phi)*exp(phi) = A111139(n)*phi + a(n).
E.g.f.: (exp(phi*x)/phi+exp(-x/phi)*phi)/(sqrt(5)*(1-x)) = exp(x/2)*(cosh(x*sqrt(5)/2)-sinh(x*sqrt(5)/2)/sqrt(5))/(1-x).
Recurrence: a(0) = 1, a(1) = 1, a(2) = 3, a(n) = (n+1)*a(n-1)+(2-n)*a(n-2)+(2-n)*a(n-3).
a(n) ~ 2*exp(phi-n)*n^(n+1/2)*(1+exp(-sqrt(5))*phi^2)*sqrt(Pi/10)/phi.
0 = a(n)*(+a(n+1) + a(n+2) - 4*a(n+3) + a(n+4)) + a(n+1)*(+a(n+1) + 3*a(n+2) - 5*a(n+3) + a(n+4)) + a(n+2)*(+2*a(n+2) - a(n+4)) + a(n+3)*(+a(n+3)) if n>=0. - Michael Somos, Oct 30 2015
EXAMPLE
For n = 3, a(3) = 3!*(Fibonacci(-1)/0! + Fibonacci(0)/1! + Fibonacci(1)/2! + Fibonacci(2)/3!) = 6*(1 + 0 + 1/2 + 1/6) = 10.
For n = 5, Gamma(5+1, phi)*exp(phi) = 120*sqrt(5) + 333 = 240*phi + 213, so a(5) = 213.
G.f. = 1 + x + 3*x^2 + 10*x^3 + 42*x^4 + 213*x^5 + 1283*x^6 + 8989*x^7 + 71925*x^8 + ...
MATHEMATICA
Table[n! Sum[Fibonacci[k-1]/k!, {k, 0, n}], {n, 0, 22}]
Round@Table[(E^(1-GoldenRatio) GoldenRatio Gamma[n+1, 1-GoldenRatio] + E^GoldenRatio Gamma[n+1, GoldenRatio]/GoldenRatio)/Sqrt[5], {n, 0, 22}]
CROSSREFS
Cf. A009102, A009551, A000142, A000166, A000522, A000023, A053486, A010844 (incomplete Gamma function values at other points).
KEYWORD
nonn
AUTHOR
STATUS
approved
a(n) = n!*Sum_{k=0..n} Fibonacci(k)/k!.
+10
2
0, 1, 3, 11, 47, 240, 1448, 10149, 81213, 730951, 7309565, 80405304, 964863792, 12543229529, 175605213783, 2634078207355, 42145251318667, 716469272418936, 12896446903543432, 245032491167329389, 4900649823346594545
OFFSET
0,3
COMMENTS
Eigensequence of a triangle with the Fibonacci series as the left border, the natural numbers (1, 2, 3, ...) as the right border; and the rest zeros. - Gary W. Adamson, Aug 01 2016
LINKS
Eric Weisstein's MathWorld, Incomplete Gamma Function.
Eric Weisstein's MathWorld, Fibonacci Number.
Eric Weisstein's MathWorld, Golden Ratio.
FORMULA
E.g.f.: (2/sqrt(5))*exp(x/2)*sinh(sqrt(5)*x/2)/(1-x).
Recurrence: a(n) = (n+1)*a(n-1) - (n-2)*a(n-2) - (n-2)*a(n-3). - Vaclav Kotesovec, Oct 18 2012
a(n) ~ 2*sqrt(e/5)*sinh(sqrt(5)/2)*n!. - Vaclav Kotesovec, Oct 18 2012
From Vladimir Reshetnikov, Oct 27 2015: (Start)
Let phi=(1+sqrt(5))/2.
a(n) = (phi^n*hypergeom([1,-n], [], 1-phi)-(1-phi)^n*hypergeom([1,-n], [], phi))/sqrt(5).
a(n) = (exp(phi)*Gamma(n+1, phi)-exp^(1-phi)*Gamma(n+1, 1-phi))/sqrt(5), where Gamma(a, x) is the upper incomplete Gamma function.
Gamma(n+1, phi)*exp(phi) = a(n)*phi + A263823(n).
a(n) ~ exp(phi-n)*n^(n+1/2)*sqrt(2*Pi/5)*(1-exp(-sqrt(5))).
(End)
MAPLE
a:=n->sum(fibonacci (j)*n!/j!, j=0..n):seq(a(n), n=0..20); # Zerinvary Lajos, Mar 19 2007
MATHEMATICA
f[n_] := n!*Sum[Fibonacci[k]/k!, {k, 0, n}]; Table[ f[n], {n, 0, 20}] (* or *)
Simplify[ Range[0, 20]!CoefficientList[ Series[2/Sqrt[5]*Exp[x/2]*Sinh[Sqrt[5]*x/2]/(1 - x), {x, 0, 20}], x]] (* Robert G. Wilson v, Oct 21 2005 *)
Module[{nn=20, fibs, fct}, fct=Range[0, nn]!; fibs=Accumulate[ Fibonacci[ Range[ 0, nn]]/fct]; Times@@@Thread[{fct, fibs}]] (* Harvey P. Dale, Feb 19 2014 *)
Round@Table[(E^GoldenRatio Gamma[n+1, GoldenRatio] - E^(1-GoldenRatio) Gamma[n+1, 1-GoldenRatio])/Sqrt[5], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 27 2015 *)
PROG
(PARI) vector(100, n, n--; n!*sum(k=0, n, fibonacci(k)/k!)) \\ Altug Alkan, Oct 28 2015
CROSSREFS
Cf. A009102, A009551, A000142, A000166, A000522, A000023, A053486, A010844 (incomplete Gamma function values at other points).
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Oct 17 2005
STATUS
approved
a(n) = n! * Sum_{k=0..floor(n/3)} (-1)^k / (3*k)!.
+10
2
1, 1, 2, 5, 20, 100, 601, 4207, 33656, 302903, 3029030, 33319330, 399831961, 5197815493, 72769416902, 1091541253529, 17464660056464, 296899220959888, 5344185977277985, 101539533568281715, 2030790671365634300, 42646604098678320299, 938225290170923046578
OFFSET
0,3
FORMULA
E.g.f.: (exp(-x) + 2 * exp(x/2) * cos(sqrt(3)*x/2)) / (3*(1 - x)).
a(n) = round(c * n!), where c = 0.834719468... = A346441.
MATHEMATICA
Table[n! Sum[(-1)^k/(3 k)!, {k, 0, Floor[n/3]}], {n, 0, 22}]
nmax = 22; CoefficientList[Series[(Exp[-x] + 2 Exp[x/2] Cos[Sqrt[3] x/2])/(3 (1 - x)), {x, 0, nmax}], x] Range[0, nmax]!
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 25 2022
STATUS
approved
a(n) = n! * Sum_{k=0..floor(n/4)} (-1)^k / (4*k)!.
+10
2
1, 1, 2, 6, 23, 115, 690, 4830, 38641, 347769, 3477690, 38254590, 459055079, 5967716027, 83548024378, 1253220365670, 20051525850721, 340875939462257, 6135766910320626, 116579571296091894, 2331591425921837879, 48963419944358595459, 1077195238775889100098
OFFSET
0,3
FORMULA
E.g.f.: cos(x/sqrt(2)) * cosh(x/sqrt(2)) / (1 - x).
a(n) = round(c * n!), where c = 0.9583581... = A346440.
MATHEMATICA
Table[n! Sum[(-1)^k/(4 k)!, {k, 0, Floor[n/4]}], {n, 0, 22}]
nmax = 22; CoefficientList[Series[Cos[x/Sqrt[2]] Cosh[x/Sqrt[2]]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 25 2022
STATUS
approved
a(n) = |Gamma(n, i)|^2, where i = sqrt(-1).
+10
0
1, 2, 5, 34, 569, 14426, 518557, 25400810, 1625695409, 131681938834, 13168189962101, 1593350918236562, 229442532743676265, 38775788044161003434, 7600054456561351409549, 1710012252724103327072026, 437763136697393060993682017, 126513546505547193228474910370
OFFSET
1,2
LINKS
FORMULA
a(n) = |Gamma(n, i)|^2 = Gamma(n, i)*Gamma(n, -i), where i = sqrt(-1).
a(n) = A009102(n-1)^2 + A009551(n-1)^2.
Recurrence: n*(n-1)*(a(n-1) - (n-2)^2*a(n-2) + 1) + a(n+1) = n^2*a(n) + 1.
a(n) ~ (n-1)!^2. - Vaclav Kotesovec, Oct 15 2016
MATHEMATICA
RecurrenceTable[{n (n - 1) (a[n - 1] - (n - 2)^2 a[n - 2] + 1) + a[n + 1] == n^2 a[n] + 1, a[1] == 1, a[2] == 2, a[3] == 5}, a[n], {n, 1, 20}] (* or *)
Round[Abs[Gamma[Range[20], I]]^2]
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved

Search completed in 0.016 seconds