Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a011557 -id:a011557
     Sort: relevance | references | number | modified | created      Format: long | short | data
Sums of 6 distinct powers of 10.
+10
10
111111, 1011111, 1101111, 1110111, 1111011, 1111101, 1111110, 10011111, 10101111, 10110111, 10111011, 10111101, 10111110, 11001111, 11010111, 11011011, 11011101, 11011110, 11100111, 11101011, 11101101, 11101110, 11110011, 11110101, 11110110, 11111001, 11111010
OFFSET
1,1
LINKS
MATHEMATICA
Sort[Plus @@@ Subsets[10^Range[0, 7], {6}]] (* Amiram Eldar, Jul 12 2022 *)
KEYWORD
nonn,easy
EXTENSIONS
Offset corrected by Amiram Eldar, Jul 12 2022
STATUS
approved
Sums of 7 distinct powers of 10.
+10
10
1111111, 10111111, 11011111, 11101111, 11110111, 11111011, 11111101, 11111110, 100111111, 101011111, 101101111, 101110111, 101111011, 101111101, 101111110, 110011111, 110101111, 110110111, 110111011, 110111101, 110111110, 111001111, 111010111, 111011011, 111011101
OFFSET
1,1
LINKS
MATHEMATICA
Take[Total/@Subsets[10^Range[0, 20], {7}]//Union, 20] (* Harvey P. Dale, Feb 25 2018 *)
KEYWORD
nonn,easy
EXTENSIONS
Offset corrected by Amiram Eldar, Jul 12 2022
STATUS
approved
Sums of 11 distinct powers of 10.
+10
10
11111111111, 101111111111, 110111111111, 111011111111, 111101111111, 111110111111, 111111011111, 111111101111, 111111110111, 111111111011, 111111111101, 111111111110, 1001111111111, 1010111111111, 1011011111111, 1011101111111, 1011110111111, 1011111011111, 1011111101111
OFFSET
1,1
LINKS
MATHEMATICA
Union[Total/@Subsets[10^Range[0, 12], {11}]] (* Harvey P. Dale, Jan 20 2013 *)
PROG
(PARI) lista(nn) = {for (n=1, nn, if (hammingweight(n) == 11, print1(subst(Pol(binary(n)), x, 10), ", "); ); ); } \\ Michel Marcus, Feb 29 2016
KEYWORD
nonn,easy
EXTENSIONS
Offset changed to 1 by Ivan Neretin, Feb 28 2016
STATUS
approved
Sums of 12 distinct powers of 10.
+10
10
111111111111, 1011111111111, 1101111111111, 1110111111111, 1111011111111, 1111101111111, 1111110111111, 1111111011111, 1111111101111, 1111111110111, 1111111111011, 1111111111101, 1111111111110, 10011111111111, 10101111111111, 10110111111111, 10111011111111, 10111101111111
OFFSET
1,1
LINKS
FORMULA
a(binomial(N,12)+k) = 10^N + A038453(k) for 1 <= k <= binomial(N,11). - Robert Israel, Feb 28 2016
MAPLE
N:= 14: # to get all terms of at most N digits
sort(map(t -> (10^N-1)/9 - add(10^j, j=t),
combinat:-choose([$0..N-1], N-12))); # Robert Israel, Feb 28 2016
MATHEMATICA
Sort[Plus @@@ Subsets[10^Range[0, 12], {12}]] (* Amiram Eldar, Jul 12 2022 *)
KEYWORD
nonn,easy
EXTENSIONS
Offset changed to 1 by Ivan Neretin, Feb 28 2016
STATUS
approved
a(n) = 2*10^n + 1.
+10
10
3, 21, 201, 2001, 20001, 200001, 2000001, 20000001, 200000001, 2000000001, 20000000001, 200000000001, 2000000000001, 20000000000001, 200000000000001, 2000000000000001, 20000000000000001, 200000000000000001, 2000000000000000001
OFFSET
0,1
COMMENTS
Numbers k such that (R(k) - 1)/(k + 1) = 1/2, where R(k) denotes the digit reversal of k (cf. A004086). - Stefano Spezia, Nov 25 2023
FORMULA
a(n) = 10*a(n-1)-9.
a(n) = 11*a(n-1)-10*a(n-2).
G.f.: 3*(1-4*x)/((1-x)*(1-10*x)).
E.g.f.: 2*exp(10*x) + exp(x). - Stefano Spezia, Nov 25 2023
MATHEMATICA
NestList[10#-9&, 3, 20] (* or *) LinearRecurrence[{11, -10}, {3, 21}, 20] (* Harvey P. Dale, Sep 30 2017 *)
PROG
(Magma) [2*10^n+1: n in [0..30]];
(Haskell)
a199682 = (+ 1) . (* 2) . (10 ^) -- Reinhard Zumkeller, Jan 30 2015
(PARI) a(n)=2*10^n+1 \\ Charles R Greathouse IV, Oct 16 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Nov 09 2011
STATUS
approved
Rectangular array read by upwards antidiagonals: a(n,k) = index of largest term <= 10^k in row n of A253572, n >= 1, k >= 0.
+10
10
1, 1, 4, 1, 7, 7, 1, 9, 20, 10, 1, 10, 34, 40, 14, 1, 10, 46, 86, 67, 17, 1, 10, 55, 141, 175, 101, 20, 1, 10, 62, 192, 338, 313, 142, 24, 1, 10, 67, 242, 522, 694, 507, 190, 27, 1, 10, 72, 287, 733, 1197, 1273, 768, 244, 30
OFFSET
1,3
COMMENTS
Or a(n,k) = the number of positive integers less than or equal to 10^k that are divisible by no prime exceeding prime(n).
EXAMPLE
Array begins:
{1, 4, 7, 10, 14, 17, 20, 24, 27, 30, ...}
{1, 7, 20, 40, 67, 101, 142, 190, 244, 306, ...}
{1, 9, 34, 86, 175, 313, 507, 768, 1105, 1530, ...}
{1, 10, 46, 141, 338, 694, 1273, 2155, 3427, 5194, ...}
{1, 10, 55, 192, 522, 1197, 2432, 4520, 7838, 12867, ...}
{1, 10, 62, 242, 733, 1848, 4106, 8289, 15519, 27365, ...}
{1, 10, 67, 287, 945, 2579, 6179, 13389, 26809, 50351, ...}
{1, 10, 72, 331, 1169, 3419, 8751, 20198, 42950, 85411, ...}
{1, 10, 76, 369, 1385, 4298, 11654, 28434, 63768, 133440, ...}
{1, 10, 79, 402, 1581, 5158, 14697, 37627, 88415, 193571, ...}
MATHEMATICA
r = 10; y[1] = t = Table[2^j, {j, 0, 39}]; max = 10^13; len = 10^10; prev = 0; For[n = 2, n <= r, n++, next = 0; For[k = 1, k <= 43, k++, If[Prime[n]^k < max, t = Union[t, Prime[n]*t]; s = FirstPosition[t, v_ /; v > len, 0]; t = Take[t, s[[1]] - 1]; If[t[[-1]] > len, t = Delete[t, -1]]; next = Length[t]; If[next == prev, Break, prev = next], Break]]; y[n] = t]; b[i_, j_] := FirstPosition[y[i], v_ /; v > 10^j][[1]]; a253635[n_, j_] := If[IntegerQ[b[n, j]], b[n, j] - 1, 0]; Flatten[Table[a253635[n - j, j], {n, r}, {j, 0, n - 1}]] (* array antidiagonals flattened *)
KEYWORD
nonn,tabl
AUTHOR
L. Edson Jeffery, Jan 07 2015
STATUS
approved
Numbers k such that the sum of digits of 9k is 27.
+10
10
111, 211, 221, 222, 311, 321, 322, 331, 332, 333, 411, 421, 422, 431, 432, 433, 441, 442, 443, 444, 511, 521, 522, 531, 532, 533, 541, 542, 543, 544, 551, 552, 553, 554, 555, 611, 621, 622, 631, 632, 633, 641, 642, 643, 644, 651, 652, 653, 654, 655, 661
OFFSET
1,1
COMMENTS
The digital sum of 9k is always a multiple of 9. For most numbers below 100 it is actually equal to 9. Numbers such that the digital sum of 9k is 18 are listed in A279769. Only every third term of the present sequence is divisible by 3.
The sequence of record gaps [and upper end of the gap] is: 100 [a(2) = 211], 101 [a(221) = 1211], 111 [a(4841) = 11211], 111 [a(10121) = 22311], 111 [a(15752) = 33411], ..., 111 [a(45133) = 88911], 111 [a(50413) = 100011], 211 [a(55253) = 111211], 311 [a(110000) = 222311], ..., 911 [a(380557) = 888911], 1011 [a(411049) = 1000011], 1211 [a(436976) = 1111211], 2311 [a(840281) = 2222311], ..., 8911 [a(2451241) = 8888911], ...
MATHEMATICA
Select[Range@ 661, Total@ IntegerDigits[9 #] == 27 &] (* Michael De Vlieger, Dec 23 2016 *)
PROG
(PARI) is(n)=sumdigits(9*n)==27
CROSSREFS
Cf. A008591, A084854, A003991, A004247, A279769 (sumdigits(9n) = 18).
Digital sum of m*n equals m: A088404 = A069537/2, A088405 = A052217/3, A088406 = A063997/4, A088407 = A069540/5, A088408 = A062768/6, A088409 = A063416/7, A088410 = A069543/8.
Numbers with given digital sum: A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225 (14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).
Cf. A007953 (digital sum), A005349 (Niven or Harshad numbers), A245062 (arranged in rows by digit sums).
Cf. A082259.
KEYWORD
nonn,base
AUTHOR
M. F. Hasler, Dec 23 2016
STATUS
approved
a(n) = (10^(2n+1)-1)/3 - 3*10^n.
+10
10
0, 303, 33033, 3330333, 333303333, 33333033333, 3333330333333, 333333303333333, 33333333033333333, 3333333330333333333, 333333333303333333333, 33333333333033333333333, 3333333333330333333333333, 333333333333303333333333333, 33333333333333033333333333333, 3333333333333330333333333333333
OFFSET
0,2
FORMULA
a(n) = 3*A138148(n) = A002277(2n+1) - 3*10^n.
G.f.: 3*x*(101 - 200*x)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
E.g.f.: exp(x)*(10*exp(99*x) - 9*exp(9*x) - 1)/3. - Stefano Spezia, Jul 13 2024
MAPLE
A332130 := n -> (10^(2*n+1)-1)/3-3*10^n;
MATHEMATICA
Array[ (10^(2 # + 1)-1)/3 - 3*10^#) &, 15, 0]
PROG
(PARI) apply( {A332130(n)=10^(n*2+1)\3-3*10^n}, [0..15])
(Python) def A332130(n): return 10**(n*2+1)//3-3*10**n
CROSSREFS
Cf. A002275 (repunits R_n = (10^n-1)/9), A002277 (3*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332120 .. A332190 (variants with different repeated digit 2, ..., 9).
Cf. A332131 .. A332139 (variants with different middle digit 1, ..., 9).
KEYWORD
nonn,base,easy
AUTHOR
M. F. Hasler, Feb 09 2020
STATUS
approved
a(n+1) = 8*a(n) + 9*a(n-1), a(0) = 0, a(1) = 1.
+10
9
0, 1, 8, 73, 656, 5905, 53144, 478297, 4304672, 38742049, 348678440, 3138105961, 28242953648, 254186582833, 2287679245496, 20589113209465, 185302018885184, 1667718169966657, 15009463529699912, 135085171767299209, 1215766545905692880, 10941898913151235921
OFFSET
0,3
COMMENTS
Binomial transform is A011557, with a leading zero. - Paul Barry, Jul 09 2003
Number of walks of length n between any two distinct nodes of the complete graph K_10. Example: a(2) = 8 because the walks of length 2 between the nodes A and B of the complete graph ABCDEFGHIJ are: ACB, ADB, AEB, AFB, AGB, AHB, AIB and AJB. - Emeric Deutsch, Apr 01 2004
The ratio a(n+1)/a(n) converges to 9 as n approaches infinity. - Felix P. Muga II, Mar 09 2014
LINKS
Jean-Paul Allouche, Jeffrey Shallit, Zhixiong Wen, Wen Wu, Jiemeng Zhang, Sum-free sets generated by the period-k-folding sequences and some Sturmian sequences, arXiv:1911.01687 [math.CO], 2019.
Martin Burtscher, Igor Szczyrba, Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
FORMULA
From Paul Barry, Jul 09 2003: (Start)
G.f.: x/((1+x)*(1-9*x)).
E.g.f. exp(4*x)*sinh(5*x)/5.
a(n) = (9^n - (-1)^n)/10. (End)
a(n) = 9^(n-1)-a(n-1). - Emeric Deutsch, Apr 01 2004
a(n) = round(9^n/10). - Mircea Merca, Dec 28 2010
MAPLE
seq(round(9^n/10), n=0..25); # Mircea Merca, Dec 28 2010
MATHEMATICA
k=0; lst={k}; Do[k=9^n-k; AppendTo[lst, k], {n, 0, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 11 2008 *)
Table[(9^n - (-1)^n)/10, {n, 0, 30}] (* or *) LinearRecurrence[{8, 9}, {0, 1}, 30] (* G. C. Greubel, Jan 06 2018 *)
PROG
(PARI) A015577_vec(N=20)=Vec(O(x^N)+1/(1-8*x-9*x^2), -N-1) \\ M. F. Hasler, Jun 14 2008, edited Oct 25 2019
(PARI) for(n=0, 30, print1((9^n - (-1)^n)/10, ", ")) \\ G. C. Greubel, Jan 06 2018
(PARI) apply( {A015577(n)=9^n\/10}, [0..25]) \\ M. F. Hasler, Oct 25 2019
(Sage) [lucas_number1(n, 8, -9) for n in range(0, 19)] # Zerinvary Lajos, Apr 25 2009
(Magma) [Round(9^n/10): n in [0..30]]; // Vincenzo Librandi, Jun 24 2011
(Maxima)
a[0]:0$
a[n]:=9^(n-1)-a[n-1]$
A015577(n):=a[n]$
makelist(A015577(n), n, 0, 30); /* Martin Ettl, Nov 05 2012 */
KEYWORD
nonn,easy
EXTENSIONS
Extended by T. D. Noe, May 23 2011
STATUS
approved
Expansion of 1/((1-2x)(1-10x)).
+10
9
1, 12, 124, 1248, 12496, 124992, 1249984, 12499968, 124999936, 1249999872, 12499999744, 124999999488, 1249999998976, 12499999997952, 124999999995904, 1249999999991808, 12499999999983616, 124999999999967232
OFFSET
0,2
FORMULA
a(n) = 125*10^(n-2) - 2^(n-2) = a(n-1)*10 + 2^n. - Henry Bottomley, Jun 06 2000
G.f.: 1/(1-12*x+20*x^2). - Zerinvary Lajos, Apr 27 2009 [corrected by R. J. Mathar, Mar 14 2011]
Convolution of A000079 and A011557. - Michael Somos, Dec 03 2016
a(n) = (5 * 10^n - 2^n) / 4. - Michael Somos, Dec 03 2016
EXAMPLE
G.f. = 1 + 12*x + 124*x^2 + 1248*x^3 + 12496*x^4 + 124992*x^5 + ...
MATHEMATICA
f[n_] := Sum[2^(k - 1)*10^(n - k), {k, n}]; Array[f, 18] (* Robert G. Wilson v, Dec 03 2016 *)
a[ n_] := (5 * 10^n - 2^n) / 4; (* Michael Somos, Dec 03 2016 *)
LinearRecurrence[{12, -20}, {1, 12}, 20] (* Harvey P. Dale, Jul 28 2020 *)
PROG
(Sage) [lucas_number1(n, 12, 20) for n in range(1, 18)] # Zerinvary Lajos, Apr 27 2009
(Sage) [(10^n - 2^n)/8 for n in range(1, 19)] # Zerinvary Lajos, Jun 05 2009
(Magma) [2^n*(5^(n+1)-1)/4: n in [0..20]]; // Vincenzo Librandi, Oct 09 2011
(PARI) Vec(1/((1-2*x)*(1-10*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
CROSSREFS
Cf. A060458. - Zerinvary Lajos, Jun 05 2009
KEYWORD
nonn,easy
STATUS
approved

Search completed in 0.155 seconds