Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a011943 -id:a011943
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(2*n) = A001570(n), a(2*n+1) = A011943(n+1).
+20
3
1, 7, 13, 97, 181, 1351, 2521, 18817, 35113, 262087, 489061, 3650401, 6811741, 50843527, 94875313, 708158977, 1321442641, 9863382151, 18405321661, 137379191137, 256353060613, 1913445293767, 3570537526921, 26650854921601, 49731172316281, 371198523608647
OFFSET
0,2
COMMENTS
See also A110294 (compare program code).
a(2*n+1) = (a(2*n) + a(2*n+2))/2 and see A232765 for Diophantine equation that produces a sequence related to a(n). - Richard R. Forberg, Nov 30 2013
FORMULA
G.f.: (1+7*x-x^2-x^3) / ((1-4*x+x^2)*(1+4*x+x^2)).
From Colin Barker, Nov 01 2016: (Start)
a(n) = (3-(-1)^n)*((-3+2*sqrt(3))*(2-sqrt(3))^n + (3+2*sqrt(3))*(2+sqrt(3))^n )/(8*sqrt(3)).
a(n) = 14*a(n-2) - a(n-4) for n>3. (End)
a(n) = (1/4)*(3 - (-1)^n)*(2*A001353(n) - A001353(n-1)). - G. C. Greubel, Jan 04 2023
MAPLE
seriestolist(series((1+7*x-x^2-x^3)/((1-4*x+x^2)*(1+4*x+x^2)), x=0, 25));
MATHEMATICA
CoefficientList[Series[(1+7x-x^2-x^3)/((1-4x+x^2)(1+4x+x^2)), {x, 0, 25}], x] (* Michael De Vlieger, Nov 01 2016 *)
PROG
(PARI) Vec((1+7*x-x^2-x^3)/((1-4*x+x^2)*(1+4*x+x^2)) + O(x^30)) \\ Colin Barker, Nov 01 2016
(Magma)
A001353:= func< n | Evaluate(ChebyshevSecond(n+1), 2) >;
[(3-(-1)^n)*(2*A001353(n) - A001353(n-1))/4: n in [0..40]]; // G. C. Greubel, Jan 04 2023
(SageMath)
def A001353(n): return chebyshev_U(n, 2)
[(3-(-1)^n)*(2*A001353(n) - A001353(n-1))/4 for n in range(41)] # G. C. Greubel, Jan 04 2023
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Creighton Dement, Jul 18 2005
STATUS
approved
a(0) = 1, a(1) = 2, a(n) = 4*a(n-1) - a(n-2).
(Formerly M1769 N0700)
+10
104
1, 2, 7, 26, 97, 362, 1351, 5042, 18817, 70226, 262087, 978122, 3650401, 13623482, 50843527, 189750626, 708158977, 2642885282, 9863382151, 36810643322, 137379191137, 512706121226, 1913445293767, 7141075053842, 26650854921601, 99462344632562, 371198523608647
OFFSET
0,2
COMMENTS
Chebyshev's T(n,x) polynomials evaluated at x=2.
x = 2^n - 1 is prime if and only if x divides a(2^(n-2)).
Any k in the sequence is succeeded by 2*k + sqrt{3*(k^2 - 1)}. - Lekraj Beedassy, Jun 28 2002
For all elements x of the sequence, 12*x^2 - 12 is a square. Lim_{n -> infinity} a(n)/a(n-1) = 2 + sqrt(3) = (4 + sqrt(12))/2 which preserves the kinship with the equation "12*x^2 - 12 is a square" where the initial "12" ends up appearing as a square root. - Gregory V. Richardson, Oct 10 2002
This sequence gives the values of x in solutions of the Diophantine equation x^2 - 3*y^2 = 1; the corresponding values of y are in A001353. The solution ratios a(n)/A001353(n) are obtained as convergents of the continued fraction expansion of sqrt(3): either as successive convergents of [2;-4] or as odd convergents of [1;1,2]. - Lekraj Beedassy, Sep 19 2003 [edited by Jon E. Schoenfield, May 04 2014]
a(n) is half the central value in a list of three consecutive integers, the lengths of the sides of a triangle with integer sides and area. - Eugene McDonnell (eemcd(AT)mac.com), Oct 19 2003
a(3+6*k) - 1 and a(3+6*k) + 1 are consecutive odd powerful numbers. See A076445. - T. D. Noe, May 04 2006
The intermediate convergents to 3^(1/2), beginning with 3/2, 12/7, 45/26, 168/97, comprise a strictly increasing sequence; essentially, numerators=A005320, denominators=A001075. - Clark Kimberling, Aug 27 2008
The upper principal convergents to 3^(1/2), beginning with 2/1, 7/4, 26/15, 97/56, comprise a strictly decreasing sequence; numerators=A001075, denominators=A001353. - Clark Kimberling, Aug 27 2008
a(n+1) is the Hankel transform of A000108(n) + A000984(n) = (n+2)*Catalan(n). - Paul Barry, Aug 11 2009
Also, numbers such that floor(a(n)^2/3) is a square: base 3 analog of A031149, A204502, A204514, A204516, A204518, A204520, A004275, A001541. - M. F. Hasler, Jan 15 2012
Pisano period lengths: 1, 2, 2, 4, 3, 2, 8, 4, 6, 6, 10, 4, 12, 8, 6, 8, 18, 6, 5, 12, ... - R. J. Mathar, Aug 10 2012
Except for the first term, positive values of x (or y) satisfying x^2 - 4*x*y + y^2 + 3 = 0. - Colin Barker, Feb 04 2014
Except for the first term, positive values of x (or y) satisfying x^2 - 14*x*y + y^2 + 48 = 0. - Colin Barker, Feb 10 2014
A triangle with row sums generating the sequence can be constructed by taking the production matrix M. Take powers of M, extracting the top rows.
M =
1, 1, 0, 0, 0, 0, ...
2, 0, 3, 0, 0, 0, ...
2, 0, 0, 3, 0, 0, ...
2, 0, 0, 0, 3, 0, ...
2, 0, 0, 0, 0, 3, ...
...
The triangle generated from M is:
1,
1, 1,
3, 1, 3,
11, 3, 3, 9,
41, 11, 9, 9, 27,
...
The left border is A001835 and row sums are (1, 2, 7, 26, 97, ...). - Gary W. Adamson, Jul 25 2016
Even-indexed terms are odd while odd-indexed terms are even. Indeed, a(2*n) = 2*(a(n))^2 - 1 and a(2*n+1) = 2*a(n)*a(n+1) - 2. - Timothy L. Tiffin, Oct 11 2016
For each n, a(0) divides a(n), a(1) divides a(2n+1), a(2) divides a(4*n+2), a(3) divides a(6*n+3), a(4) divides a(8*n+4), a(5) divides a(10n+5), and so on. Thus, a(k) divides a((2*n+1)*k) for each k > 0 and n >= 0. A proof of this can be found in Bhargava-Kedlaya-Ng's first solution to Problem A2 of the 76th Putnam Mathematical Competition. Links to the exam and its solutions can be found below. - Timothy L. Tiffin, Oct 12 2016
From Timothy L. Tiffin, Oct 21 2016: (Start)
If any term a(n) is a prime number, then its index n will be a power of 2. This is a consequence of the results given in the previous two comments. See A277434 for those prime terms.
a(2n) == 1 (mod 6) and a(2*n+1) == 2 (mod 6). Consequently, each odd prime factor of a(n) will be congruent to 1 modulo 6 and, thus, found in A002476.
a(n) == 1 (mod 10) if n == 0 (mod 6), a(n) == 2 (mod 10) if n == {1,-1} (mod 6), a(n) == 7 (mod 10) if n == {2,-2} (mod 6), and a(n) == 6 (mod 10) if n == 3 (mod 6). So, the rightmost digits of a(n) form a repeating cycle of length 6: 1, 2, 7, 6, 7, 2. (End)
a(A298211(n)) = A002350(3*n^2). - A.H.M. Smeets, Jan 25 2018
(2 + sqrt(3))^n = a(n) + A001353(n)*sqrt(3), n >= 0; integers in the quadratic number field Q(sqrt(3)). - Wolfdieter Lang, Feb 16 2018
Yong Hao Ng has shown that for any n, a(n) is coprime with any member of A001834 and with any member of A001835. - René Gy, Feb 26 2018
Positive numbers k such that 3*(k-1)*(k+1) is a square. - Davide Rotondo, Oct 25 2020
a(n)*a(n+1)-1 = a(2*n+1)/2 = A001570(n) divides both a(n)^6+1 and a(n+1)^6+1. In other words, for k = a(2*n+1)/2, (k+1)^6 has divisors congruent to -1 modulo k (cf. A350916). - Max Alekseyev, Jan 23 2022
REFERENCES
Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
Eugene McDonnell, "Heron's Rule and Integer-Area Triangles", Vector 12.3 (January 1996) pp. 133-142.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
P.-F. Teilhet, Reply to Query 2094, L'Intermédiaire des Mathématiciens, 10 (1903), 235-238.
LINKS
Indranil Ghosh, Table of n, a(n) for n = 0..1745 (terms 0..200 from T. D. Noe)
Christian Aebi and Grant Cairns, Lattice Equable Parallelograms, arXiv:2006.07566 [math.NT], 2020.
Christian Aebi and Grant Cairns, Less than Equable Triangles on the Eisenstein lattice, arXiv:2312.10866 [math.CO], 2023.
Krassimir T. Atanassov and Anthony G. Shannon, On intercalated Fibonacci sequences, Notes on Number Theory and Discrete Mathematics (2020) Vol. 26, No. 3, 218-223.
C. Banderier and D. Merlini, Lattice paths with an infinite set of jumps, FPSAC02, Melbourne, 2002.
Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
H. Brocard, Notes élémentaires sur le problème de Peel [sic], Nouvelle Correspondance Mathématique, 4 (1878), 337-343.
Chris Caldwell, Primality Proving, Arndt's theorem.
J. B. Cosgrave and K. Dilcher, A role for generalized Fermat numbers, Math. Comp., 2016.
G. Dresden and Y. Li, Periodic Weighted Sums of Binomial Coefficients, arXiv:2210.04322 [math.NT], 2022.
E. I. Emerson, Recurrent Sequences in the Equation DQ^2=R^2+N, Fib. Quart., 7 (1969), pp. 231-242.
Margherita Maria Ferrari and Norma Zagaglia Salvi, Aperiodic Compositions and Classical Integer Sequences, Journal of Integer Sequences, Vol. 20 (2017), Article 17.8.8.
R. K. Guy, Letter to N. J. A. Sloane concerning A001075, A011943, A094347 [Scanned and annotated letter, included with permission]
Tanya Khovanova, Recursive Sequences
Clark Kimberling, Best lower and upper approximates to irrational numbers, Elemente der Mathematik, 52 (1997) 122-126.
Pablo Lam-Estrada, Myriam Rosalía Maldonado-Ramírez, José Luis López-Bonilla, and Fausto Jarquín-Zárate, The sequences of Fibonacci and Lucas for each real quadratic fields Q(Sqrt(d)), arXiv:1904.13002 [math.NT], 2019.
Eugene McDonnell, Heron's Rule and Integer-Area Triangles, At Play With J, 2010.
Valcho Milchev and Tsvetelina Karamfilova, Domino tiling in grid - new dependence, arXiv:1707.09741 [math.HO], 2017.
Yong Hao Ng, A partition in three classes of the set of all prime numbers?, Mathematics Stack Exchange.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
F. V. Waugh and M. W. Maxfield, Side-and-diagonal numbers, Math. Mag., 40 (1967), 74-83.
FORMULA
G.f.: (1 - 2*x)/(1 - 4*x + x^2). - Simon Plouffe in his 1992 dissertation
E.g.f.: exp(2*x)*cosh(sqrt(3)*x).
a(n) = 4*a(n-1) - a(n-2) = a(-n).
a(n) = (S(n, 4) - S(n-2, 4))/2 = T(n, 2), with S(n, x) := U(n, x/2), S(-1, x) := 0, S(-2, x) := -1. U, resp. T, are Chebyshev's polynomials of the second, resp. first, kind. S(n-1, 4) = A001353(n), n >= 0. See A049310 and A053120.
a(n) = A001353(n+2) - 2*A001353(n+1).
a(n) = sqrt(1 + 3*A001353(n)) (cf. Richardson comment, Oct 10 2002).
a(n) = 2^(-n)*Sum_{k>=0} binomial(2*n, 2*k)*3^k = 2^(-n)*Sum_{k>=0} A086645(n, k)*3^k. - Philippe Deléham, Mar 01, 2004
a(n) = ((2 + sqrt(3))^n + (2 - sqrt(3))^n)/2; a(n) = ceiling((1/2)*(2 + sqrt(3))^(n)).
a(n) = cosh(n * log(2 + sqrt(3))).
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k)*2^(n-2*k)*3^k. - Paul Barry, May 08 2003
a(n+2) = 2*a(n+1) + 3*Sum_{k>=0} a(n-k)*2^k. - Philippe Deléham, Mar 03 2004
a(n) = 2*a(n-1) + 3*A001353(n-1). - Lekraj Beedassy, Jul 21 2006
a(n) = left term of M^n * [1,0] where M = the 2 X 2 matrix [2,3; 1,2]. Right term = A001353(n). Example: a(4) = 97 since M^4 * [1,0] = [A001075(4), A001353(4)] = [97, 56]. - Gary W. Adamson, Dec 27 2006
Binomial transform of A026150: (1, 1, 4, 10, 28, 76, ...). - Gary W. Adamson, Nov 23 2007
First differences of A001571. - N. J. A. Sloane, Nov 03 2009
Sequence satisfies -3 = f(a(n), a(n+1)) where f(u, v) = u^2 + v^2 - 4*u*v. - Michael Somos, Sep 19 2008
a(n) = Sum_{k=0..n} A201730(n,k)*2^k. - Philippe Deléham, Dec 06 2011
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(3*k - 4)/(x*(3*k - 1) - 2/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 28 2013
a(n) = Sum_{k=0..n} A238731(n,k). - Philippe Deléham, Mar 05 2014
a(n) = (-1)^n*(A125905(n) + 2*A125905(n-1)), n > 0. - Franck Maminirina Ramaharo, Nov 11 2018
a(n) = (tan(Pi/12)^n + tan(5*Pi/12)^n)/2. - Greg Dresden, Oct 01 2020
From Peter Bala, Aug 17 2022: (Start)
a(n) = (1/2)^n * [x^n] ( 4*x + sqrt(1 + 12*x^2) )^n.
The g.f. A(x) satisfies A(2*x) = 1 + x*B'(x)/B(x), where B(x) = 1/sqrt(1 - 8*x + 4*x^2) is the g.f. of A069835.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p >= 3 and positive integers n and k.
Sum_{n >= 1} 1/(a(n) - (3/2)/a(n)) = 1.
Sum_{n >= 1} (-1)^(n+1)/(a(n) + (1/2)/a(n)) = 1/3.
Sum_{n >= 1} 1/(a(n)^2 - 3/2) = 1 - 1/sqrt(3). (End)
a(n) = binomial(2*n, n) + 2*Sum_{k > 0} binomial(2*n, n+2*k)*cos(k*Pi/3). - Greg Dresden, Oct 11 2022
2*a(n) + 2^n = 3*Sum_{k=-n..n} (-1)^k*binomial(2*n, n+6*k). - Greg Dresden, Feb 07 2023
EXAMPLE
2^6 - 1 = 63 does not divide a(2^4) = 708158977, therefore 63 is composite. 2^5 - 1 = 31 divides a(2^3) = 18817, therefore 31 is prime.
G.f. = 1 + 2*x + 7*x^2 + 26*x^3 + 97*x^4 + 362*x^5 + 1351*x^6 + 5042*x^7 + ...
MAPLE
A001075 := proc(n)
orthopoly[T](n, 2) ;
end proc:
seq(A001075(n), n=0..30) ; # R. J. Mathar, Apr 14 2018
MATHEMATICA
Table[ Ceiling[(1/2)*(2 + Sqrt[3])^n], {n, 0, 24}]
CoefficientList[Series[(1-2*x) / (1-4*x+x^2), {x, 0, 24}], x] (* Jean-François Alcover, Dec 21 2011, after Simon Plouffe *)
LinearRecurrence[{4, -1}, {1, 2}, 30] (* Harvey P. Dale, Aug 22 2015 *)
Round@Table[LucasL[2n, Sqrt[2]]/2, {n, 0, 20}] (* Vladimir Reshetnikov, Sep 15 2016 *)
ChebyshevT[Range[0, 20], 2] (* Eric W. Weisstein, May 26 2017 *)
a[ n_] := LucasL[2*n, x]/2 /. x->Sqrt[2]; (* Michael Somos, Sep 05 2022 *)
PROG
(PARI) {a(n) = subst(poltchebi(abs(n)), x, 2)};
(PARI) {a(n) = real((2 + quadgen(12))^abs(n))};
(PARI) {a(n) = polsym(1 - 4*x + x^2, abs(n))[1 + abs(n)]/2};
(PARI) a(n)=polchebyshev(n, 1, 2) \\ Charles R Greathouse IV, Nov 07 2016
(PARI) my(x='x+O('x^30)); Vec((1-2*x)/(1-4*x+x^2)) \\ G. C. Greubel, Dec 19 2017
(SageMath) [lucas_number2(n, 4, 1)/2 for n in range(0, 25)] # Zerinvary Lajos, May 14 2009
(Haskell)
a001075 n = a001075_list !! n
a001075_list =
1 : 2 : zipWith (-) (map (4 *) $ tail a001075_list) a001075_list
-- Reinhard Zumkeller, Aug 11 2011
(SageMath)
def a(n):
Q = QuadraticField(3, 't')
u = Q.units()[0]
return (u^n).lift().coeffs()[0] # Ralf Stephan, Jun 19 2014
(Magma) I:=[1, 2]; [n le 2 select I[n] else 4*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 19 2017
CROSSREFS
KEYWORD
nonn,easy,nice
EXTENSIONS
More terms from James A. Sellers, Jul 10 2000
Chebyshev comments from Wolfdieter Lang, Oct 31 2002
STATUS
approved
a(n) = 4*a(n-1) - a(n-2) with a(0) = 2, a(1) = 4.
(Formerly M1278)
+10
51
2, 4, 14, 52, 194, 724, 2702, 10084, 37634, 140452, 524174, 1956244, 7300802, 27246964, 101687054, 379501252, 1416317954, 5285770564, 19726764302, 73621286644, 274758382274, 1025412242452, 3826890587534, 14282150107684, 53301709843202, 198924689265124
OFFSET
0,1
COMMENTS
a(n) gives values of x satisfying x^2 - 3*y^2 = 4; corresponding y values are given by 2*A001353(n).
If M is any given term of the sequence, then the next one is 2*M + sqrt(3*M^2 - 12). - Lekraj Beedassy, Feb 18 2002
For n > 0, the three numbers a(n) - 1, a(n), and a(n) + 1 form a Fleenor-Heronian triangle, i.e., a Heronian triangle with consecutive sides, whose area A(n) may be obtained from the relation [4*A(n)]^2 = 3([a(2n)]^2 - 4); or A(n) = 3*A001353(2*n)/2 and whose semiperimeter is 3*a[n]/2. The sequence is symmetrical about a[0], i.e., a[-n] = a[n].
For n > 0, a(n) + 2 is the number of dimer tilings of a 2*n X 2 Klein bottle (cf. A103999).
Tsumura shows that, for prime p, a(p) is composite (contrary to a conjecture of Juricevic). - Charles R Greathouse IV, Apr 13 2010
Except for the first term, positive values of x (or y) satisfying x^2 - 4*x*y + y^2 + 12 = 0. - Colin Barker, Feb 04 2014
Except for the first term, positive values of x (or y) satisfying x^2 - 14*x*y + y^2 + 192 = 0. - Colin Barker, Feb 16 2014
A268281(n) - 1 is a member of this sequence iff A268281(n) is prime. - Frank M Jackson, Feb 27 2016
a(n) gives values of x satisfying 3*x^2 - 4*y^2 = 12; corresponding y values are given by A005320. - Sture Sjöstedt, Dec 19 2017
Middle side lengths of almost-equilateral Heronian triangles. - Wesley Ivan Hurt, May 20 2020
For all elements k of the sequence, 3*(k-2)*(k+2) is a square. - Davide Rotondo, Oct 25 2020
REFERENCES
B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 82.
J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p.91.
Michael P. Cohen, Generating Heronian Triangles With Consecutive Integer Sides. Journal of Recreational Mathematics, vol. 30 no. 2 1999-2000 p. 123.
L. E. Dickson, History of The Theory of Numbers, Vol. 2 pp. 197;198;200;201. Chelsea NY.
Charles R. Fleenor, Heronian Triangles with Consecutive Integer Sides, Journal of Recreational Mathematics, Volume 28, no. 2 (1996-7) 113-115.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.
V. D. To, "Finding All Fleenor-Heronian Triangles", Journal of Recreational Mathematics vol. 32 no.4 2003-4 pp. 298-301 Baywood NY.
LINKS
R. A. Beauregard and E. R. Suryanarayan, The Brahmagupta Triangles, The College Mathematics Journal 29(1) 13-7 1998 MAA.
Hacène Belbachir, Soumeya Merwa Tebtoub and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
Daniel Birmajer, Juan B. Gil and Michael D. Weiner, Linear recurrence sequences with indices in arithmetic progression and their sums, arXiv preprint arXiv:1505.06339 [math.NT], 2015.
H. W. Gould, A triangle with integral sides and area, Fib. Quart., 11 (1973), 27-39.
Tanya Khovanova, Recursive Sequences
E. Keith Lloyd, The Standard Deviation of 1, 2, ..., n: Pell's Equation and Rational Triangles, Math. Gaz. vol 81 (1997), 231-243.
S. Northshield, An Analogue of Stern's Sequence for Z[sqrt(2)], Journal of Integer Sequences, 18 (2015), #15.11.6.
Hideyuki Ohtskua, proposer, Problem B-1351, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 62, No. 3 (2024), p. 258.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Jeffrey Shallit, An interesting continued fraction, Math. Mag., 48 (1975), 207-211.
Jeffrey Shallit, An interesting continued fraction, Math. Mag., 48 (1975), 207-211. [Annotated scanned copy]
Yu Tsumura, On compositeness of special types of integers, arXiv:1004.1244 [math.NT], 2010.
Eric Weisstein's World of Mathematics, Heronian Triangle
A. V. Zarelua, On Matrix Analogs of Fermat's Little Theorem, Mathematical Notes, vol. 79, no. 6, 2006, pp. 783-796. Translated from Matematicheskie Zametki, vol. 79, no. 6, 2006, pp. 840-855.
FORMULA
a(n) = ( 2 + sqrt(3) )^n + ( 2 - sqrt(3) )^n.
a(n) = 2*A001075(n).
G.f.: 2*(1 - 2*x)/(1 - 4*x + x^2). Simon Plouffe in his 1992 dissertation.
a(n) = A001835(n) + A001835(n+1).
a(n) = trace of n-th power of the 2 X 2 matrix [1 2 / 1 3]. - Gary W. Adamson, Jun 30 2003 [corrected by Joerg Arndt, Jun 18 2020]
From the addition formula, a(n+m) = a(n)*a(m) - a(m-n), it is easy to derive multiplication formulas, such as: a(2*n) = (a(n))^2 - 2, a(3*n) = (a(n))^3 - 3*(a(n)), a(4*n) = (a(n))^4 - 4*(a(n))^2 + 2, a(5*n) = (a(n))^5 - 5*(a(n))^3 + 5*(a(n)), a(6*n) = (a(n))^6 - 6*(a(n))^4 + 9*(a(n))^2 - 2, etc. The absolute values of the coefficients in the expansions are given by the triangle A034807. - John Blythe Dobson, Nov 04 2007
a(n) = 2*A001353(n+1) - 4*A001353(n). - R. J. Mathar, Nov 16 2007
From Peter Bala, Jan 06 2013: (Start)
Let F(x) = Product_{n=0..infinity} (1 + x^(4*n + 1))/(1 + x^(4*n + 3)). Let alpha = 2 - sqrt(3). This sequence gives the simple continued fraction expansion of 1 + F(alpha) = 2.24561 99455 06551 88869 ... = 2 + 1/(4 + 1/(14 + 1/(52 + ...))). Cf. A174500.
Also F(-alpha) = 0.74544 81786 39692 68884 ... has the continued fraction representation 1 - 1/(4 - 1/(14 - 1/(52 - ...))) and the simple continued fraction expansion 1/(1 + 1/((4 - 2) + 1/(1 + 1/((14 - 2) + 1/(1 + 1/((52 - 2) + 1/(1 + ...))))))).
F(alpha)*F(-alpha) has the simple continued fraction expansion 1/(1 + 1/((4^2 - 4) + 1/(1 + 1/((14^2 - 4) + 1/(1 + 1/((52^2 - 4) + 1/(1 + ...))))))).
(End)
a(2^n) = A003010(n). - John Blythe Dobson, Mar 10 2014
a(n) = [x^n] ( (1 + 4*x + sqrt(1 + 8*x + 12*x^2))/2 )^n for n >= 1. - Peter Bala, Jun 23 2015
E.g.f.: 2*exp(2*x)*cosh(sqrt(3)*x). - Ilya Gutkovskiy, Apr 27 2016
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*n*(n - k - 1)!/(k!*(n - 2*k)!)*4^(n - 2*k) for n >= 1. - Peter Luschny, May 10 2016
From Peter Bala, Oct 15 2019: (Start)
a(n) = trace(M^n), where M is the 2 X 2 matrix [0, 1; -1, 4].
Consequently the Gauss congruences hold: a(n*p^k) = a(n*p^(k-1)) ( mod p^k ) for all prime p and positive integers n and k. See Zarelua and also Stanley (Ch. 5, Ex. 5.2(a) and its solution).
2*Sum_{n >= 1} 1/( a(n) - 6/a(n) ) = 1.
6*Sum_{n >= 1} (-1)^(n+1)/( a(n) + 2/a(n) ) = 1.
8*Sum_{n >= 1} 1/( a(n) + 24/(a(n) - 12/(a(n))) ) = 1.
8*Sum_{n >= 1} (-1)^(n+1)/( a(n) + 8/(a(n) + 4/(a(n))) ) = 1.
Series acceleration formulas for sums of reciprocals:
Sum_{n >= 1} 1/a(n) = 1/2 - 6*Sum_{n >= 1} 1/(a(n)*(a(n)^2 - 6)),
Sum_{n >= 1} 1/a(n) = 1/8 + 24*Sum_{n >= 1} 1/(a(n)*(a(n)^2 + 12)),
Sum_{n >= 1} (-1)^(n+1)/a(n) = 1/6 + 2*Sum_{n >= 1} (-1)^(n+1)/(a(n)*(a(n)^2 + 2)) and
Sum_{n >= 1} (-1)^(n+1)/a(n) = 1/8 + 8*Sum_{n >= 1} (-1)^(n+1)/(a(n)*(a(n)^2 + 12)).
Sum_{n >= 1} 1/a(n) = ( theta_3(2-sqrt(3))^2 - 1 )/4 = 0.34770 07561 66992 06261 .... See Borwein and Borwein, Proposition 3.5 (i), p.91.
Sum_{n >= 1} (-1)^(n+1)/a(n) = ( 1 - theta_3(sqrt(3)-2)^2 )/4. Cf. A003499 and A153415. (End)
a(n) = tan(Pi/12)^n + tan(5*Pi/12)^n. - Greg Dresden, Oct 01 2020
From Wolfdieter Lang, Sep 06 2021: (Start)
a(n) = S(n, 4) - S(n-2, 4) = 2*T(n, 2), for n >= 0, with S and T Chebyshev polynomials, with S(-1, x) = 0 and S(-2, x) = -1. S(n, 4) = A001353(n+1), for n >= -1, and T(n, 2) = A001075(n).
a(2*k) = A067902(k), a(2*k+1) = 4*A001570(k+1), for k >= 0. (End)
a(n) = sqrt(2 + 2*A011943(n+1)) = sqrt(2 + 2*A102344(n+1)), n>0. - Ralf Steiner, Sep 23 2021
Sum_{n>=1} arctan(3/a(n)^2) = Pi/6 - arctan(1/3) = A019673 - A105531 (Ohtskua, 2024). - Amiram Eldar, Aug 29 2024
MAPLE
A003500 := proc(n) option remember; if n <= 1 then 2*n+2 else 4*procname(n-1)-procname(n-2); fi;
end proc;
MATHEMATICA
a[0]=2; a[1]=4; a[n_]:= a[n]= 4a[n-1] -a[n-2]; Table[a[n], {n, 0, 23}]
LinearRecurrence[{4, -1}, {2, 4}, 30] (* Harvey P. Dale, Aug 20 2011 *)
Table[Round@LucasL[2n, Sqrt[2]], {n, 0, 20}] (* Vladimir Reshetnikov, Sep 15 2016 *)
PROG
(Sage) [lucas_number2(n, 4, 1) for n in range(0, 24)] # Zerinvary Lajos, May 14 2009
(Haskell)
a003500 n = a003500_list !! n
a003500_list = 2 : 4 : zipWith (-)
(map (* 4) $ tail a003500_list) a003500_list
-- Reinhard Zumkeller, Dec 17 2011
(PARI) x='x+O('x^99); Vec(-2*(-1+2*x)/(1-4*x+x^2)) \\ Altug Alkan, Apr 04 2016
(Magma) I:=[2, 4]; [n le 2 select I[n] else 4*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2018
CROSSREFS
Cf. A011945 (areas), A334277 (perimeters).
Cf. this sequence (middle side lengths), A016064 (smallest side lengths), A335025 (largest side lengths).
KEYWORD
nonn,easy,nice
EXTENSIONS
More terms from James A. Sellers, May 03 2000
Additional comments from Lekraj Beedassy, Feb 14 2002
STATUS
approved
Standard deviation of A007654.
(Formerly M4948)
+10
45
0, 1, 14, 195, 2716, 37829, 526890, 7338631, 102213944, 1423656585, 19828978246, 276182038859, 3846719565780, 53577891882061, 746243766783074, 10393834843080975, 144767444036350576, 2016350381665827089, 28084137899285228670, 391161580208327374291, 5448177985017298011404
OFFSET
1,3
COMMENTS
a(n) corresponds also to one-sixth the area of Fleenor-Heronian triangle with middle side A003500(n). - Lekraj Beedassy, Jul 15 2002
a(n) give all (nontrivial, integer) solutions of Pell equation b(n+1)^2 - 48*a(n+1)^2 = +1 with b(n+1)=A011943(n), n>=0.
For n>=3, a(n) equals the permanent of the (n-2) X (n-2) tridiagonal matrix with 14's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
For n>1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,13}. - Milan Janjic, Jan 25 2015
6*a(n)^2 = 6*S(n-1, 14)^2 is the triangular number Tri((T(n, 7) - 1)/2) with Tri = A000217 and T = A053120. This is instance k = 3 of the general k-identity given in a comment to A001109. - Wolfdieter Lang, Feb 01 2016
REFERENCES
D. A. Benaron, personal communication.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Indranil Ghosh, Table of n, a(n) for n = 1..874 (terms 1..100 from T. D. Noe)
R. Flórez, R. A. Higuita and A. Mukherjee, Alternating Sums in the Hosoya Polynomial Triangle, Article 14.9.5 Journal of Integer Sequences, Vol. 17 (2014).
D. S. Hale, 3165. Perfect Squares of the Form 48n^2+1, Math. Gaz., Oct. 1966, page 307.
Milan Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
Tanya Khovanova, Recursive Sequences
Murray S. Klamkin, Perfect Squares of the Form (m^2 - 1)a_n^2 + t, Math. Mag., 1969, page 111.
E. K. Lloyd, The standard deviation of 1, 2, ..., n, Pell's equation and rational triangles, The Mathematical Gazette, Vol. 81, No. 491 (Jul., 1997), pp. 231-243.
Dino Lorenzini and Z. Xiang, Integral points on variable separated curves, Preprint 2016.
FORMULA
a(n) = 14*a(n-1) - a(n-2).
G.f.: x^2/(1-14*x+x^2).
a(n+1) ~ 1/24*sqrt(3)*(2 + sqrt(3))^(2*n). - Joe Keane (jgk(AT)jgk.org), May 15 2002
a(n+1) = S(n-1, 14), n>=0, with S(n, x) := U(n, x/2) Chebyshev's polynomials of the second kind. S(-1, x) := 0. See A049310.
a(n+1) = ( (7+4*sqrt(3))^n - (7-4*sqrt(3))^n )/(8*sqrt(3)).
a(n+1) = sqrt((A011943(n)^2 - 1)/48), n>=0.
Chebyshev's polynomials U(n-2, x) evaluated at x=7.
a(n) = A001353(2n)/4. - Lekraj Beedassy, Jul 15 2002
4*a(n+1) + A046184(n) = A055793(n+2) + A098301(n+1) 4*a(n+1) + A098301(n+1) + A055793(n+2) = A046184(n+1) (4*a(n+1))^2 = A098301(2n+1) (conjectures). - Creighton Dement, Nov 02 2004
(4*a(n))^2 = A103974(n)^2 - A011922(n-1)^2. - Paul D. Hanna, Mar 06 2005
From Mohamed Bouhamida, May 26 2007: (Start)
a(n) = 13*( a(n-1) + a(n-2) ) - a(n-3).
a(n) = 15*( a(n-1) - a(n-2) ) + a(n-3). (End)
a(n) = b such that (-1)^n/4*Integral_{x=-Pi/2..Pi/2} (sin((2*n-2)*x))/(2-sin(x)) dx = c+b*log(3). - Francesco Daddi, Aug 02 2011
a(n+2) = Sum_{k=0..n} A101950(n,k)*13^k. - Philippe Deléham, Feb 10 2012
Product {n >= 1} (1 + 1/a(n)) = 1/3*(3 + 2*sqrt(3)). - Peter Bala, Dec 23 2012
Product {n >= 2} (1 - 1/a(n)) = 1/7*(3 + 2*sqrt(3)). - Peter Bala, Dec 23 2012
a(n) = (A028230(n) - A001570(n))/2. - Richard R. Forberg, Nov 14 2013
E.g.f.: 1 - exp(7*x)*(12*cosh(4*sqrt(3)*x) - 7*sqrt(3)*sinh(4*sqrt(3)*x))/12. - Stefano Spezia, Dec 11 2022
EXAMPLE
G.f. = x^2 + 14*x^3 + 195*x^4 + 2716*x^5 + 37829*x^6 + 526890*x^7 + ...
MAPLE
0, seq(orthopoly[U](n, 7), n=0..30); # Robert Israel, Feb 04 2016
MATHEMATICA
Table[GegenbauerC[n, 1, 7], {n, 0, 20}] (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008 *)
LinearRecurrence[{14, -1}, {0, 1}, 20] (* Vincenzo Librandi, Feb 02 2016 *)
ChebyshevU[Range[21] -2, 7] (* G. C. Greubel, Dec 23 2019 *)
Table[Sum[Binomial[n, 2 k - 1]*7^(n - 2 k + 1)*48^(k - 1), {k, 1, n}], {n, 0, 15}] (* Horst H. Manninger, Jan 16 2022 *)
PROG
(Sage) [lucas_number1(n, 14, 1) for n in range(0, 20)] # Zerinvary Lajos, Jun 25 2008
(Sage) [chebyshev_U(n, 7) for n in (-1..20)] # G. C. Greubel, Dec 23 2019
(Magma) [n le 2 select n-1 else 14*Self(n-1)-Self(n-2): n in [1..70]]; // Vincenzo Librandi, Feb 02 2016
(PARI) concat(0, Vec((x^2/(1-14*x+x^2) + O(x^30)))) \\ Michel Marcus, Feb 02 2016
(PARI) vector(21, n, polchebyshev(n-2, 2, 7) ) \\ G. C. Greubel, Dec 23 2019
(GAP) m:=7;; a:=[0, 1];; for n in [3..20] do a[n]:=2*m*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 23 2019
CROSSREFS
Chebyshev sequence U(n, m): A000027 (m=1), A001353 (m=2), A001109 (m=3), A001090 (m=4), A004189 (m=5), A004191 (m=6), this sequence (m=7), A077412 (m=8), A049660 (m=9), A075843 (m=10), A077421 (m=11), A077423 (m=12), A097309 (m=13), A097311 (m=14), A097313 (m=15), A029548 (m=16), A029547 (m=17), A144128 (m=18), A078987 (m=19), A097316 (m=33).
Cf. A323182.
KEYWORD
nonn,easy
EXTENSIONS
Chebyshev comments from Wolfdieter Lang, Nov 08 2002
STATUS
approved
Triangle of coefficients of Chebyshev polynomials T_n(x).
+10
26
1, 1, -1, 2, -3, 4, 1, -8, 8, 5, -20, 16, -1, 18, -48, 32, -7, 56, -112, 64, 1, -32, 160, -256, 128, 9, -120, 432, -576, 256, -1, 50, -400, 1120, -1280, 512, -11, 220, -1232, 2816, -2816, 1024, 1, -72, 840, -3584, 6912, -6144, 2048, 13, -364, 2912, -9984, 16640, -13312, 4096
OFFSET
0,4
COMMENTS
The row length sequence of this irregular array is A008619(n), n >= 0. Even or odd powers appear in increasing order starting with 1 or x for even or odd row numbers n, respectively. This is the standard triangle A053120 with 0 deleted. - Wolfdieter Lang, Aug 02 2014
Let T* denote the triangle obtained by replacing each number in this triangle by its absolute value. Then T* gives the coefficients for cos(nx) as a polynomial in cos x. - Clark Kimberling, Aug 04 2024
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
E. A. Guilleman, Synthesis of Passive Networks, Wiley, 1957, p. 593.
Yaroslav Zolotaryuk, J. Chris Eilbeck, "Analytical approach to the Davydov-Scott theory with on-site potential", Physical Review B 63, p543402, Jan. 2001. The authors write, "Since the algebra of these is 'hyperbolic', contrary to the usual Chebyshev polynomials defined on the interval 0 <= x <= 1, we call the set of functions (21) the hyperbolic Chebyshev polynomials." (This refers to the triangle T* described in Comments.)
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
C. Lanczos, Applied Analysis (Annotated scans of selected pages)
I. Rivin, Growth in free groups (and other stories), arXiv:math/9911076 [math.CO], 1999.
Eric Weisstein's World of Mathematics, Chebyshev Polynomial of the First Kind.
FORMULA
a(n,m) = 2^(m-1) * n * (-1)^((n-m)/2) * ((n+m)/2-1)! / (((n-m)/2)! * m!) if n>0. - R. J. Mathar, Apr 20 2007
From Paul Weisenhorn, Oct 02 2019: (Start)
T_n(x) = 2*x*T_(n-1)(x) - T_(n-2)(x), T_0(x) = 1, T_1(x) = x.
T_n(x) = ((x+sqrt(x^2-1))^n + (x-sqrt(x^2-1))^n)/2. (End)
From Peter Bala, Aug 15 2022: (Start)
T(n,x) = [z^n] ( z*x + sqrt(1 + z^2*(x^2 - 1)) )^n.
Sum_{k = 0..2*n} binomial(2*n,k)*T(k,x) = (2^n)*(1 + x)^n*T(n,x).
exp( Sum_{n >= 1} T(n,x)*t^n/n ) = Sum_{n >= 0} P(n,x)*t^n, where P(n,x) denotes the n-th Legendre polynomial. (End)
EXAMPLE
Rows are: (1), (1), (-1,2), (-3,4), (1,-8,8), (5,-20,16) etc., since if c = cos(x): cos(0x) = 1, cos(1x) = 1c; cos(2x) = -1+2c^2; cos(3x) = -3c+4c^3, cos(4x) = 1-8c^2+8c^4, cos(5x) = 5c-20c^3+16c^5, etc.
From Wolfdieter Lang, Aug 02 2014: (Start)
This irregular triangle a(n,k) begins:
n\k 0 1 2 3 4 5 6 7 ...
0: 1
1: 1
2: -1 2
3: -3 4
4: 1 -8 8
5: 5 -20 16
6: -1 18 -48 32
7: -7 56 -112 64
8: 1 -32 160 -256 128
9: 9 -120 432 -576 256
10: -1 50 -400 1120 -1280 512
11: -11 220 -1232 2816 -2816 1024
12: 1 -72 840 -3584 6912 -6144 2048
13: 13 -364 2912 -9984 16640 -13312 4096
14: -1 98 -1568 9408 -26880 39424 -28672 8192
15: -15 560 -6048 28800 -70400 92160 -61440 16384
...
T(4,x) = 1 - 8*x^2 + 8*x^4, T(5,x) = 5*x - 20*x^3 +16*x^5.
(End)
MAPLE
A008310 := proc(n, m) local x ; coeftayl(simplify(ChebyshevT(n, x), 'ChebyshevT'), x=0, m) ; end: i := 0 : for n from 0 to 100 do for m from n mod 2 to n by 2 do printf("%d %d ", i, A008310(n, m)) ; i := i+1 ; od ; od ; # R. J. Mathar, Apr 20 2007
# second Maple program:
b:= proc(n) b(n):= `if`(n<2, 1, expand(2*b(n-1)-x*b(n-2))) end:
T:= n-> (p-> (d-> seq(coeff(p, x, d-i), i=0..d))(degree(p)))(b(n)):
seq(T(n), n=0..15); # Alois P. Heinz, Sep 04 2019
MATHEMATICA
Flatten[{1, Table[CoefficientList[ChebyshevT[n, x], x], {n, 1, 13}]}]//DeleteCases[#, 0, Infinity]& (* or *) Flatten[{1, Table[Table[((-1)^k*2^(n-2 k-1)*n*Binomial[n-k, k])/(n-k), {k, Floor[n/2], 0, -1}], {n, 1, 13}]}] (* Eugeniy Sokol, Sep 04 2019 *)
CROSSREFS
A039991 is a row reversed version, but has zeros which enable the triangle to be seen. Columns/diagonals are A011782, A001792, A001793, A001794, A006974, A006975, A006976 etc.
Reflection of A028297. Cf. A008312, A053112.
Row sums are one. Polynomial evaluations include A001075 (x=2), A001541 (x=3), A001091, A001079, A023038, A011943, A001081, A023039, A001085, A077422, A077424, A097308, A097310, A068203.
Cf. A053120.
KEYWORD
sign,tabf,nice,easy
EXTENSIONS
Additional comments and more terms from Henry Bottomley, Dec 13 2000
Edited: Corrected Cf. A039991 statement. Cf. A053120 added. - Wolfdieter Lang, Aug 06 2014
STATUS
approved
Numbers k such that the standard deviation of 1,...,k is an integer.
(Formerly M3154)
+10
17
0, 3, 48, 675, 9408, 131043, 1825200, 25421763, 354079488, 4931691075, 68689595568, 956722646883, 13325427460800, 185599261804323, 2585064237799728, 36005300067391875, 501489136705686528, 6984842613812219523, 97286307456665386800, 1355023461779503195683
OFFSET
1,2
COMMENTS
Gives solutions k to the Diophantine equation m^2 = k*(k+1)/3. - Anton Lorenz Vrba (anton(AT)a-l-v.net), Jun 28 2005
If x=a(n), y=a(n+1), z=a(n+2) are three consecutive terms, then x^2 - 16*y*x + 14*x*z + 16*y^2 - 16*z*y + z^2 = 144. The formula is symmetric in x and z, so it is also valid for x=a(n+2), y=a(n+1), z=a(n). - Alexander Samokrutov, Jul 02 2015
From Bernard Schott, Apr 09 2021 (Start):
Corresponding solutions m (of first comment) are in A011944.
Equivalently, numbers k such that k/3 and k+1 are both perfect squares. (End)
REFERENCES
Guy Alarcon and Yves Duval, TS: Préparation au Concours Général, RMS, Collection Excellence, Paris, 2010, chapitre 13, Questions proposées aux élèves de Terminale S, Exercice 1, p. 220, p. 223.
D. A. Benaron, personal communication.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
a(n) = 3*A098301(n-1).
a(m) = 14*a(m-1) - a(m-2) + 6.
G.f.: -3*x^2*(1+x)/(-1+x)/(1-14*x+x^2) = -3 + (1/2)/(-1+x) + (1/2)*(-97*x+7)/(1-14*x+x^2). - R. J. Mathar, Nov 20 2007
a(n) = (-2 + (7-4*sqrt(3))^n*(7+4*sqrt(3)) + (7-4*sqrt(3))*(7+4*sqrt(3))^n)/4. - Colin Barker, Mar 05 2016
From Bernard Schott, Apr 09 2021: (Start)
a(n) = 3 * A001353(n-1)^2.
a(n) = A055793(n+1) - 1 = A001075(n-1)^2 - 1. (End)
2*a(n) = A011943(n)-1. - R. J. Mathar, Mar 16 2023
MATHEMATICA
RecurrenceTable[{a[m] == 14 a[m - 1] - a[m - 2] + 6, a[1] == 0, a[2] == 3}, a, {m, 1, 17}] (* Michael De Vlieger, Jul 02 2015 *)
CoefficientList[Series[-3 x^2*(1 + x)/(-1 + x)/(1 - 14 x + x^2), {x, 0, 17}], x] (* Michael De Vlieger, Feb 02 2016 *)
PROG
(PARI) concat(0, 3*Vec((1+x)/(1-x)/(1-14*x+x^2)+O(x^98))) \\ Charles R Greathouse IV, May 14 2013
(Magma) I:=[0, 3]; [n le 2 select I[n] else 14*Self(n-1)-Self(n-2)+6: n in [1..20]]; // Vincenzo Librandi, Mar 05 2016
KEYWORD
easy,nonn
EXTENSIONS
Corrected by Keith Lloyd, Mar 15 1996
STATUS
approved
a(n) = a(-n) = 34*a(n-1) - a(n-2), and a(0)=1, a(1)=17.
+10
13
1, 17, 577, 19601, 665857, 22619537, 768398401, 26102926097, 886731088897, 30122754096401, 1023286908188737, 34761632124320657, 1180872205318713601, 40114893348711941777, 1362725501650887306817, 46292552162781456490001
OFFSET
0,2
COMMENTS
The sequence satisfies the Pell equation a(n)^2 - 18 * A202299(n+1)^2 = 1. - Vincenzo Librandi, Dec 19 2011
Also numbers n such that n - 1 and 2*n + 2 are squares. - Arkadiusz Wesolowski, Mar 15 2015
And they, n - 1 and 2*n + 2, are the squares of A005319 and A003499. - Michel Marcus, Mar 15 2015
This sequence {a(n)} gives all the nonnegative integer solutions of the Pell equation a(n)^2 - 32*(3*A091761(n))^2 = +1. - Wolfdieter Lang, Mar 09 2019
FORMULA
a(n) = (r^n + 1/r^n)/2 with r = 17 + sqrt(17^2-1).
a(n) = 16*A001110(n) + 1 = A001541(2n) = (4*A001109(n))^2 + 1 = 3*A001109(2n-1) - A001109(2n-2) = A001109(2n) - 3*A001109(2n-1).
a(n) = T(n, 17) = T(2*n, 3) with T(n, x) Chebyshev's polynomials of the first kind. See A053120. T(n, 3)= A001541(n).
G.f.: (1-17*x)/(1-34*x+x^2).
G.f.: (1 - 17*x / (1 - 288*x / (17 - x))). - Michael Somos, Apr 05 2019
a(n) = cosh(2n*arcsinh(sqrt(8))). - Herbert Kociemba, Apr 24 2008
a(n) = (a^n + b^n)/2 where a = 17 + 12*sqrt(2) and b = 17 - 12*sqrt(2); sqrt(a(n)-1)/4 = A001109(n). - James R. Buddenhagen, Dec 09 2011
a(-n) = a(n). - Michael Somos, May 28 2014
a(n) = sqrt(1 + 32*9*A091761(n)^2), n >= 0. See one of the Pell comments above. - Wolfdieter Lang, Mar 09 2019
EXAMPLE
G.f. = 1 + 17*x + 577*x^2 + 19601*x^3 + 665857*x^4 + 22619537*x^5 + ...
MATHEMATICA
LinearRecurrence[{34, -1}, {1, 17}, 30] (* Vincenzo Librandi, Dec 18 2011 *)
a[ n_] := ChebyshevT[ 2 n, 3]; (* Michael Somos, May 28 2014 *)
PROG
(Sage) [lucas_number2(n, 34, 1)/2 for n in range(0, 15)] # Zerinvary Lajos, Jun 27 2008
(Magma) I:=[1, 17]; [n le 2 select I[n] else 34*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Dec 18 2011
(Maxima) makelist(expand(((17+sqrt(288))^n+(17-sqrt(288))^n))/2, n, 0, 15); // Vincenzo Librandi, Dec 18 2011
(PARI) {a(n) = polchebyshev( n, 1, 17)}; /* Michael Somos, Apr 05 2019 */
CROSSREFS
Cf. A001075, A001541, A001091, A001079, A023038, A011943, A001081, A023039, A001085 and note relationship with square triangular number sequences A001110 and A001109. A091761.
Row 3 of array A188644.
KEYWORD
nonn,easy
AUTHOR
Henry Bottomley, Aug 16 2000
EXTENSIONS
More terms from James A. Sellers, Sep 07 2000
Chebyshev comments from Wolfdieter Lang, Nov 29 2002
STATUS
approved
Member r=16 of the family of Chebyshev sequences S_r(n) defined in A092184.
+10
12
0, 1, 16, 225, 3136, 43681, 608400, 8473921, 118026496, 1643897025, 22896531856, 318907548961, 4441809153600, 61866420601441, 861688079266576, 12001766689130625, 167163045568562176, 2328280871270739841, 32428769152221795600, 451674487259834398561
OFFSET
0,3
COMMENTS
Also m such that (3*m^2 + m)/4 = m*(3*m + 1)/4 is a perfect square. - Ctibor O. Zizka, Oct 15 2010
Consequently A049451(k) is a square if and only if k = a(n). - Bruno Berselli, Oct 14 2011
LINKS
FORMULA
a(n) = (T(n, 7)-1)/6 with Chebyshev's polynomials of the first kind evaluated at x=7: T(n, 7) = A011943(n) = ((7 + 4*sqrt(3))^n + (7 - 4*sqrt(3))^n)/2; therefore: a(n) = ((7 + 4*sqrt(3))^n + (7 - 4*sqrt(3))^n - 2)/12.
a(n) = A001353(n)^2 = S(n-1, 4)^2 with Chebyshev's polynomials of the second kind evaluated at x=4, S(n, 4):=U(n, 2).
a(n) = 14*a(n-1) - a(n-2) + 2, n >= 2, a(0)=0, a(1)=1.
a(n) = 15*a(n-1) - 15*a(n-2) + a(n-3), n >= 3.
G.f.: x*(1+x)/((1-x)*(1 - 14*x + x^2)) = x*(1+x)/(1 - 15*x + 15*x^2 - x^3) (from the Stephan link, see A092184).
Conjecture: 4*A007655(n+1) + A046184(n) = A055793(n+2) + a(n+1). - Creighton Dement, Nov 01 2004
a(n) = (A001075(n)^2-1)/3. - Parker Grootenhuis, Nov 28 2017
MATHEMATICA
LinearRecurrence[{# - 1, -# + 1, 1}, {0, 1, #}, 20] &[16] (* Michael De Vlieger, Feb 23 2021 *)
PROG
(PARI) concat(0, Vec(x*(1+x)/((1-x)*(1-14*x+x^2)) + O(x^50))) \\ Colin Barker, Jun 15 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Oct 18 2004
STATUS
approved
Array of (k^n + k^(-n))/2 where k = (sqrt(x^2-1) + x)^2 for integers x >= 1.
+10
10
1, 1, 1, 1, 7, 1, 1, 97, 17, 1, 1, 1351, 577, 31, 1, 1, 18817, 19601, 1921, 49, 1, 1, 262087, 665857, 119071, 4801, 71, 1, 1, 3650401, 22619537, 7380481, 470449, 10081, 97, 1, 1, 50843527, 768398401, 457470751, 46099201, 1431431, 18817, 127, 1
OFFSET
0,5
COMMENTS
Conjecture: Given the function f(x,y) = (sqrt(x^2+y) + x)^2 and constant k=f(x,y), then for all integers x >= 1 and y=[+-]1, k may be irrational, but (k^n + k^(-n))/2 always produces integer sequences; y=-1 results shown here; y=1 results are A188645.
Also square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where A(n,k) is Chebyshev polynomial of the first kind T_{2*k}(x), evaluated at x=n. - Seiichi Manyama, Dec 30 2018
FORMULA
A(n,k) = (A188646(n,k-1) + A188646(n,k))/2.
A(n,k) = Sum_{j=0..k} binomial(2*k,2*j)*(n^2-1)^(k-j)*n^(2*j). - Seiichi Manyama, Jan 01 2019
EXAMPLE
Row 2 gives {( (2+sqrt(3))^(2*n) + (2-sqrt(3))^(2*n) )/2}.
Square array begins:
| 0 1 2 3 4
-----+---------------------------------------------
1 | 1, 1, 1, 1, 1, ...
2 | 1, 7, 97, 1351, 18817, ...
3 | 1, 17, 577, 19601, 665857, ...
4 | 1, 31, 1921, 119071, 7380481, ...
5 | 1, 49, 4801, 470449, 46099201, ...
6 | 1, 71, 10081, 1431431, 203253121, ...
7 | 1, 97, 18817, 3650401, 708158977, ...
8 | 1, 127, 32257, 8193151, 2081028097, ...
9 | 1, 161, 51841, 16692641, 5374978561, ...
10 | 1, 199, 79201, 31521799, 12545596801, ...
11 | 1, 241, 116161, 55989361, 26986755841, ...
12 | 1, 287, 164737, 94558751, 54276558337, ...
13 | 1, 337, 227137, 153090001, 103182433537, ...
14 | 1, 391, 305761, 239104711, 186979578241, ...
15 | 1, 449, 403201, 362074049, 325142092801, ...
...
MATHEMATICA
max = 9; y = -1; t = Table[k = ((x^2 + y)^(1/2) + x)^2; ((k^n) + (k^(-n)))/2 // FullSimplify, {n, 0, max - 1}, {x, 1, max}]; Table[ t[[n - k + 1, k]], {n, 1, max}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 17 2013 *)
CROSSREFS
Row 2 is A011943, row 3 is A056771, row 8 is A175633, (row 2)*2 is A067902, (row 9)*2 is A089775.
(column 1)*2 is A060626.
Cf. A188645 (f(x, y) as above with y=1).
Diagonals give A173129, A322899.
KEYWORD
nonn,tabl
AUTHOR
Charles L. Hohn, Apr 06 2011
EXTENSIONS
Edited by Seiichi Manyama, Dec 30 2018
More terms from Seiichi Manyama, Jan 01 2019
STATUS
approved
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where A(n,k) is Chebyshev polynomial of the first kind T_{n}(x), evaluated at x=k.
+10
10
1, 1, 0, 1, 1, -1, 1, 2, 1, 0, 1, 3, 7, 1, 1, 1, 4, 17, 26, 1, 0, 1, 5, 31, 99, 97, 1, -1, 1, 6, 49, 244, 577, 362, 1, 0, 1, 7, 71, 485, 1921, 3363, 1351, 1, 1, 1, 8, 97, 846, 4801, 15124, 19601, 5042, 1, 0, 1, 9, 127, 1351, 10081, 47525, 119071, 114243, 18817, 1, -1
OFFSET
0,8
FORMULA
A(0,k) = 1, A(1,k) = k and A(n,k) = 2 * k * A(n-1,k) - A(n-2,k) for n > 1.
A(n,k) = cos(n*arccos(k)). - Seiichi Manyama, Mar 05 2021
A(n,k) = n * Sum_{j=0..n} (2*k-2)^j * binomial(n+j,2*j)/(n+j) for n > 0. - Seiichi Manyama, Mar 05 2021
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
-1, 1, 7, 17, 31, 49, 71, ...
0, 1, 26, 99, 244, 485, 846, ...
1, 1, 97, 577, 1921, 4801, 10081, ...
0, 1, 362, 3363, 15124, 47525, 120126, ...
-1, 1, 1351, 19601, 119071, 470449, 1431431, ...
MATHEMATICA
Table[ChebyshevT[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Amiram Eldar, Dec 28 2018 *)
PROG
(PARI) T(n, k) = polchebyshev(n, 1, k);
matrix(7, 7, n, k, T(n-1, k-1)) \\ Michel Marcus, Dec 28 2018
(PARI) T(n, k) = round(cos(n*acos(k))); \\ Seiichi Manyama, Mar 05 2021
(PARI) T(n, k) = if(n==0, 1, n*sum(j=0, n, (2*k-2)^j*binomial(n+j, 2*j)/(n+j))); \\ Seiichi Manyama, Mar 05 2021
CROSSREFS
Mirror of A101124.
Main diagonal gives A115066.
Cf. A323182 (Chebyshev polynomial of the second kind).
KEYWORD
sign,tabl
AUTHOR
Seiichi Manyama, Dec 28 2018
STATUS
approved

Search completed in 0.040 seconds