Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a034841 -id:a034841
     Sort: relevance | references | number | modified | created      Format: long | short | data
Multinomial coefficients (0, 1, ..., n)! = C(n+1,2)!/(0!*1!*2!*...*n!).
+10
37
1, 1, 3, 60, 12600, 37837800, 2053230379200, 2431106898187968000, 73566121315513295589120000, 65191584694745586153436251091200000, 1906765806522767212441719098019963758016000000, 2048024348726152339387799085049745725891853852479488000000
OFFSET
0,3
COMMENTS
Number of ways to put numbers 1, 2, ..., n*(n+1)/2 in a triangular array of n rows in such a way that each row is increasing. Also number of ways to choose groups of 1, 2, 3, ..., n-1 and n objects out of n*(n+1)/2 objects. - Floor van Lamoen, Jul 16 2001
a(n) is the number of ways to linearly order the multiset {1,2,2,3,3,3,...n,n,...n}. - Geoffrey Critzer, Mar 08 2009
Also the number of distinct adjacency matrices in the n-triangular honeycomb rook graph. - Eric W. Weisstein, Jul 14 2017
LINKS
Eric Weisstein's World of Mathematics, Adjacency Matrix
Eric Weisstein's World of Mathematics, Multinomial Coefficient
FORMULA
a(n) = (n*(n+1)/2)!/(0!*1!*2!*...*n!).
a(n) = a(n-1) * A014068(n). - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 08 2001.
a(n) = A052295(n)/A000178(n). - Lekraj Beedassy, Feb 19 2004
a(n) = A208437(n*(n+1)/2,n). - Alois P. Heinz, Apr 08 2016
a(n) ~ A * exp(n^2/4 + n + 1/6) * n^(n^2/2 + 7/12) / (2^((n+1)^2/2) * Pi^(n/2)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, May 02 2019
a(n) = A327803(n*(n+1)/2,n). - Alois P. Heinz, Sep 25 2019
a(n) = A008480(A006939(n)). - Gus Wiseman, Aug 12 2020
EXAMPLE
From Gus Wiseman, Aug 12 2020: (Start)
The a(3) = 60 permutations of the prime indices of A006939(3) = 360:
(111223) (121123) (131122) (212113) (231211)
(111232) (121132) (131212) (212131) (232111)
(111322) (121213) (131221) (212311) (311122)
(112123) (121231) (132112) (213112) (311212)
(112132) (121312) (132121) (213121) (311221)
(112213) (121321) (132211) (213211) (312112)
(112231) (122113) (211123) (221113) (312121)
(112312) (122131) (211132) (221131) (312211)
(112321) (122311) (211213) (221311) (321112)
(113122) (123112) (211231) (223111) (321121)
(113212) (123121) (211312) (231112) (321211)
(113221) (123211) (211321) (231121) (322111)
(End)
MAPLE
with(combinat):
a:= n-> multinomial(binomial(n+1, 2), $0..n):
seq(a(n), n=0..12); # Alois P. Heinz, May 18 2013
MATHEMATICA
Table[Apply[Multinomial , Range[n]], {n, 0, 20}] (* Geoffrey Critzer, Dec 09 2012 *)
Table[Multinomial @@ Range[n], {n, 0, 20}] (* Eric W. Weisstein, Jul 14 2017 *)
Table[Binomial[n + 1, 2]!/BarnesG[n + 2], {n, 0, 20}] (* Eric W. Weisstein, Jul 14 2017 *)
Table[Length[Permutations[Join@@Table[i, {i, n}, {i}]]], {n, 0, 4}] (* Gus Wiseman, Aug 12 2020 *)
PROG
(PARI) a(n) = binomial(n+1, 2)!/prod(k=1, n, k^(n+1-k)); \\ Michel Marcus, May 02 2019
CROSSREFS
A190945 counts the case of anti-run permutations.
A317829 counts partitions of this multiset.
A325617 is the version for factorials instead of superprimorials.
A006939 lists superprimorials or Chernoff numbers.
A008480 counts permutations of prime indices.
A181818 gives products of superprimorials, with complement A336426.
KEYWORD
nonn,easy
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Apr 11 2001
More terms from Michel ten Voorde, Apr 12 2001
Better definition from L. Edson Jeffery, May 18 2013
STATUS
approved
De Bruijn's triangle, T(m,n) = (m*n)!/(n!^m) read by downward antidiagonals.
+10
24
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 6, 1, 1, 1, 20, 90, 24, 1, 1, 1, 70, 1680, 2520, 120, 1, 1, 1, 252, 34650, 369600, 113400, 720, 1, 1, 1, 924, 756756, 63063000, 168168000, 7484400, 5040, 1
OFFSET
0,9
COMMENTS
From Tilman Piesk, Oct 28 2014: (Start)
Number of permutations of a multiset that contains m different elements n times. These multisets have the signatures A249543(m,n-1) for m>=1 and n>=2.
In an m-dimensional Pascal tensor (the generalization of a symmetric Pascal matrix) P(x1,...,xn) = (x1+...+xn)!/(x1!*...*xn!), so the main diagonal of an m-dimensional Pascal tensor is D(n) = (m*n)!/(n!^m). These diagonals are the rows of this array (with m>0), which begins like this:
m\n:0 1 2 3 4 5
0: 1 1 1 1 1 1 ... A000012;
1: 1 1 1 1 1 1 ... A000012;
2: 1 2 6 20 70 252 ... A000984;
3: 1 6 90 1680 34650 756756 ... A006480;
4: 1 24 2520 369600 63063000 11732745024 ... A008977;
5: 1 120 113400 168168000 305540235000 623360743125120 ... A008978;
6: 1 720 7484400 137225088000 3246670537110000 88832646059788350720 ... A008979;
with columns: A000142 (n=1), A000680 (n=2), A014606 (n=3), A014608 (n=4), A014609 (n=5).
A089759 is the transpose of this matrix. A034841 is its diagonal. A141906 is its lower triangle. A120666 is the upper triangle of this matrix with indices starting from 1. A248827 are the diagonal sums (or the row sums of the triangle).
(End)
LINKS
T. Chappell, A. Lascoux, S. Ole Warnaar, and W. Zudilin, Logarithmic and complex constant term identities, arXiv:1112.3130 [math.CO], 2012.
FORMULA
T(m,n) = (m*n)!/(n!)^m.
A060540(m,n) = T(m,n)/m! . - R. J. Mathar, Jun 21 2023
EXAMPLE
T(3,5) = (3*5)!/(5!^3) = 756756 = A014609(3) = A006480(5) is the number of permutations of a multiset that contains 3 different elements 5 times, e.g., {1,1,1,1,1,2,2,2,2,2,3,3,3,3,3}.
MATHEMATICA
T[n_, k_]:= (k*n)!/(n!)^k; Table[T[n, k-n], {k, 9}, {n, 0, k-1}]//Flatten
PROG
(Magma) [Factorial(k*(n-k))/(Factorial(n-k))^k: k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 26 2022
(SageMath)
def A187783(n, k): return gamma(k*(n-k)+1)/(factorial(n-k))^k
flatten([[A187783(n, k) for k in range(n+1)] for n in range(11)]) # G. C. Greubel, Dec 26 2022
CROSSREFS
Cf. A089759 (transposed), A141906 (subtriangle), A120666 (subtriangle transposed), A060538 (1st row/colmn removed).
Main diagonal gives: A034841.
Row sums of the triangle: A248827.
KEYWORD
nonn,tabl,easy
AUTHOR
Robert G. Wilson v, Jan 05 2013
EXTENSIONS
Row m=0 prepended by Tilman Piesk, Oct 28 2014
STATUS
approved
Table T(n,k), 0<=k, 0<=n, read by antidiagonals, defined by T(n,k) = (k*n)! / (n!)^k.
+10
18
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 6, 1, 1, 1, 24, 90, 20, 1, 1, 1, 120, 2520, 1680, 70, 1, 1, 1, 720, 113400, 369600, 34650, 252, 1, 1, 1, 5040, 7484400, 168168000, 63063000, 756756, 924, 1, 1, 1, 40320, 681080400, 137225088000, 305540235000, 11732745024, 17153136, 3432, 1, 1
OFFSET
0,8
COMMENTS
T(n,k) is the number of lattice paths from {n}^k to {0}^k using steps that decrement one component by 1. - Alois P. Heinz, May 06 2013
LINKS
T. Chappell, A. Lascoux, S. Ole Warnaar, W. Zudilin, Logarithmic and complex constant term identities, arXiv:1112.3130 [math.CO], 2012.
EXAMPLE
Row n=0: 1, 1, 1, 1, 1, 1, ... A000012
Row n=1: 1, 1, 2, 6, 24, 120, ... A000142
Row n=2: 1, 1, 6, 90, 2520, 113400, ... A000680
Row n=3: 1, 1, 20, 1680, 369600, 168168000, ... A014606
Row n=4: 1, 1, 70, 34650, 63063000, 305540235000, ... A014608
Row n=5: 1, 1, 252, 756756, 11732745024, 623360743125120, ... A014609
MAPLE
T:= (n, k)-> (k*n)!/(n!)^k:
seq(seq(T(n, d-n), n=0..d), d=0..10); # Alois P. Heinz, Aug 16 2012
MATHEMATICA
T[n_, k_] := (k*n)!/(n!)^k; Table[T[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 19 2015 *)
CROSSREFS
Cf. A000680, A014606, A014608, A014609, A000984, A187783 (transposed version).
Main diagonal gives A034841.
KEYWORD
easy,tabl,nonn
AUTHOR
Philippe Deléham, Jan 08 2004; revised Jun 08 2005
EXTENSIONS
Corrected by Alois P. Heinz, Aug 16 2012
STATUS
approved
a(n) = (n^2)!/(n!)^(n+1); number of ways of dividing n^2 labeled items into n unlabeled boxes of n items each.
+10
11
1, 1, 3, 280, 2627625, 5194672859376, 3708580189773818399040, 1461034854396267778567973305958400, 450538787986875167583433232345723106006796340625, 146413934927214422927834111686633731590253260933067148964500000000
OFFSET
0,3
COMMENTS
Note that if n=p^k for p prime then a(n) is coprime to n (i.e., a(n) is not divisible by p).
a(n) is also the number of labelings for the simple graph K_n X K_n, the graph Cartesian product of the complete graph with itself. - Geoffrey Critzer, Oct 16 2016
a(n) is also the number of knockout tournament seedings with 2 rounds and n participants in each match. - Alexander Karpov, Dec 15 2017
LINKS
Alexander Karpov, Generalized knockout tournaments, National Research University Higher School of Economics. WP7/2017/03.
FORMULA
a(n) = A034841(n)/A000142(n).
a(n) ~ exp(n - 1/12) * n^((n-1)*(2*n-1)/2) / (2*Pi)^(n/2). - Vaclav Kotesovec, Nov 23 2018
EXAMPLE
a(2)=3 since the possibilities are {{0,1},{2,3}}; {{0,2},{1,3}}; and {{0,3},{1,2}}.
MAPLE
a:= n-> (n^2)!/(n!)^(n+1):
seq(a(n), n=0..10); # Alois P. Heinz, Apr 29 2020
MATHEMATICA
Table[a[z_] := z^n/n!; (n^2)! Coefficient[Series[a[a[z]], {z, 0, n^2}], z^(n^2)], {n, 1, 10}] (* Geoffrey Critzer, Oct 16 2016 *)
PROG
(PARI) a(n) = (n^2)!/(n!)^(n+1); \\ Altug Alkan, Dec 17 2017
CROSSREFS
Main diagonal of A060540.
KEYWORD
nonn
AUTHOR
Henry Bottomley, Oct 06 2000
STATUS
approved
Sum of the terms of the n-th row of triangle pertaining to A096130.
+10
11
1, 7, 105, 2386, 71890, 2695652, 120907185, 6312179764, 375971507406, 25160695768715, 1869031937691061, 152603843369288819, 13584174777196666630, 1309317592648179024666, 135850890740575408906465
OFFSET
1,2
COMMENTS
The product of the terms of the n-th row is given by A034841.
Collection of partial binary matrices: 1 to n rows of length n and a total of n entries set to one in each partial matrix. - Olivier Gérard, Aug 08 2016
LINKS
FORMULA
a(n) = Sum_{k=1..n} binomial(k*n, n). - Reinhard Zumkeller, Jan 09 2005
a(n) = (1/n!) * Sum_{j=1..n} Product_{i=n*(j-1)+1..n*j} i. - Reinhard Zumkeller, Jan 09 2005 [corrected by Seiichi Manyama, Aug 17 2018]
a(n) ~ exp(1)/(exp(1)-1) * binomial(n^2,n). - Vaclav Kotesovec, Jun 06 2013
EXAMPLE
From Seiichi Manyama, Aug 18 2018: (Start)
a(1) = (1/1!) * (1) = 1.
a(2) = (1/2!) * (1*2 + 3*4) = 7.
a(3) = (1/3!) * (1*2*3 + 4*5*6 + 7*8*9) = 105.
a(4) = (1/4!) * (1*2*3*4 + 5*6*7*8 + 9*10*11*12 + 13*14*15*16) = 2386. (End)
MAPLE
A096130 := proc(n, k) binomial(k*n, n) ; end: A096131 := proc(n) local k; add( A096130(n, k), k=1..n) ; end: for n from 1 to 18 do printf("%d, ", A096131(n)) ; od ; # R. J. Mathar, Apr 30 2007
seq(add((binomial(n*k, n)), k=0..n), n=1..15); # Zerinvary Lajos, Sep 16 2007
MATHEMATICA
Table[Sum[Binomial[k*n, n], {k, 0, n}], {n, 1, 20}] (* Vaclav Kotesovec, Jun 06 2013 *)
PROG
(GAP) List(List([1..20], n->List([1..n], k->Binomial(k*n, n))), Sum); # Muniru A Asiru, Aug 12 2018
(PARI) a(n) = sum(k=1, n, binomial(k*n, n)); \\ Michel Marcus, Aug 20 2018
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Jul 04 2004
EXTENSIONS
More terms from R. J. Mathar, Apr 30 2007
Edited by N. J. A. Sloane, Sep 06 2008 at the suggestion of R. J. Mathar
STATUS
approved
Square array read by antidiagonals of number of ways of dividing n*k labeled items into n labeled boxes with k items in each box.
+10
7
1, 1, 2, 1, 6, 6, 1, 20, 90, 24, 1, 70, 1680, 2520, 120, 1, 252, 34650, 369600, 113400, 720, 1, 924, 756756, 63063000, 168168000, 7484400, 5040, 1, 3432, 17153136, 11732745024, 305540235000, 137225088000, 681080400, 40320, 1, 12870
OFFSET
1,3
LINKS
FORMULA
T(n, k) = (nk)!/k!^n = T(n-1, k)*binomial(nk, k) = T(n-1, k)*A060539(n, k) = A060540(n, k)*A000142(k).
EXAMPLE
1 1 1 1
2 6 20 70
6 90 1680 34650
24 2520 369600 63063000
PROG
(PARI) T(n, k)=(n*k)!/k!^n;
for(n=1, 6, for(k=1, 6, print1(T(n, k), ", ")); print) \\ Harry J. Smith, Jul 06 2009
CROSSREFS
Subtable of A187783.
Rows include A000012, A000984, A006480, A008977, A008978 etc.
Columns include A000142, A000680, A014606, A014608, A014609 etc.
Main diagonal is A034841.
KEYWORD
nonn,tabl,easy
AUTHOR
Henry Bottomley, Apr 02 2001
STATUS
approved
G.f.: Sum_{n>=0} (n^2)!/n!^n * x^n / (1-x)^(n^2+1).
+10
7
1, 2, 9, 1714, 63079895, 623361815288736, 2670177752844538217570947, 7363615666255986180456959666126927684, 18165723931631174937747337664794705661513150850379149, 53130688706387570972824498004857476332107293478561950967662962585645710
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} Product_{j=0..k-1} binomial(n+j*k,k).
a(n) ~ exp(-1/12) * n^(n^2-n/2+1) / (2*Pi)^((n-1)/2). - Vaclav Kotesovec, Sep 23 2013
EXAMPLE
G.f.: A(x) = 1 + 2*x + 9*x^2 + 1714*x^3 + 63079895*x^4 + 623361815288736*x^5 +...
where
A(x) = 1/(1-x) + x/(1-x)^2 + (4!/2!^2)*x^2/(1-x)^5 + (9!/3!^3)*x^3/(1-x)^10 + (16!/4!^4)*x^4/(1-x)^17 + (25!/5!^5)*x^5/(1-x)^26 +...
Equivalently,
A(x) = 1/(1-x) + x/(1-x)^2 + 6*x^2/(1-x)^5 + 1680*x^3/(1-x)^10 + 63063000*x^4/(1-x)^17 + 623360743125120*x^5/(1-x)^26 +...+ A034841(n)*x^n/(1-x)^(n^2+1) +...
Illustrate formula a(n) = Sum_{k=0..n} Product_{j=0..k-1} C(n+j*k,k) for initial terms:
a(0) = 1;
a(1) = 1 + C(1,1);
a(2) = 1 + C(2,1) + C(2,2)*C(4,2);
a(3) = 1 + C(3,1) + C(3,2)*C(5,2) + C(3,3)*C(6,3)*C(9,3);
a(4) = 1 + C(4,1) + C(4,2)*C(6,2) + C(4,3)*C(7,3)*C(10,3) + C(4,4)*C(8,4)*C(12,4)*C(16,4);
a(5) = 1 + C(5,1) + C(5,2)*C(7,2) + C(5,3)*C(8,3)*C(11,3) + C(5,4)*C(9,4)*C(13,4)*C(17,4) + C(5,5)*C(10,5)*C(15,5)*C(20,5)*C(25,5); ...
which numerically equals:
a(0) = 1;
a(1) = 1 + 1 = 2;
a(2) = 1 + 2 + 1*6 = 9;
a(3) = 1 + 3 + 3*10 + 1*20*84 = 1714;
a(4) = 1 + 4 + 6*15 + 4*35*120 + 1*70*495*1820 = 63079895;
a(5) = 1 + 5 + 10*21 + 10*56*165 + 5*126*715*2380 + 1*252*3003*15504*53130 = 623361815288736; ...
MAPLE
with(combinat):
a:= n-> add(multinomial(n+(k-1)*k, n-k, k$k), k=0..n):
seq(a(n), n=0..15); # Alois P. Heinz, Sep 23 2013
MATHEMATICA
Table[Sum[Product[Binomial[n+j*k, k], {j, 0, k-1}], {k, 0, n}], {n, 0, 10}] (* Vaclav Kotesovec, Sep 23 2013 *)
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, (m^2)!/m!^m*x^m/(1-x+x*O(x^n))^(m^2+1)), n)}
for(n=0, 15, print1(a(n), ", "))
(PARI) {a(n)=sum(k=0, n, prod(j=0, k-1, binomial(n+j*k, k)))}
for(n=0, 15, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 22 2013
STATUS
approved
a(n) is the least integer of the form (n^2)!/(n!)^k.
+10
5
1, 3, 280, 2627625, 5194672859376, 5150805819130303332, 1461034854396267778567973305958400, 450538787986875167583433232345723106006796340625, 146413934927214422927834111686633731590253260933067148964500000000
OFFSET
1,2
COMMENTS
(n^2)!/(n!)^(n+1) is an integer for every n (see A057599). Hence k >= n+1. Conjecture: k=n+1 only when n is prime or a power of a prime.
LINKS
EXAMPLE
a(4) = 16!/(4!)^5 = 2627625 which is not further divisible by 24.
PROG
(PARI) a(n)={if(n==1, 1, (n^2)!/(n!^valuation((n^2)!, n!)))} \\ Andrew Howroyd, Nov 09 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Jul 03 2004
EXTENSIONS
Edited by Don Reble, Jul 04 2004
a(9) from Andrew Howroyd, Nov 09 2019
STATUS
approved
Number of sequences with up to n copies each of 1,2,...,n.
+10
5
1, 2, 19, 5248, 191448941, 1856296498826906, 7843008902239185171370147, 21408941228439913825832318523364743824, 52400635808473472283994952631626957015306076632624953, 152306240915343870544748050434914720360496623911547121447677238156864610
OFFSET
0,2
LINKS
FORMULA
a(n) ~ exp(11/12) * n^(n^2 - n/2 + 1) / (2*Pi)^((n-1)/2). - Vaclav Kotesovec, May 24 2020
EXAMPLE
a(0) = 1: () = the empty sequence.
a(1) = 2: (), 1.
a(2) = 19: (), 1, 2, 11, 12, 21, 22, 112, 121, 122, 211, 212, 221, 1122, 1212, 1221, 2112, 2121, 2211.
MAPLE
b:= proc(n, k, i) option remember; `if`(k=0, 1,
`if`(i<1, 0, add(b(n, k-j, i-1)/j!, j=0..min(k, n))))
end:
a:= n-> add(b(n, k, n)*k!, k=0..n^2):
seq(a(n), n=0..10);
MATHEMATICA
Table[Sum[k!*SeriesCoefficient[Sum[x^j/j!, {j, 0, n}]^n, {x, 0, k}], {k, 0, n^2}], {n, 0, 10}] (* Vaclav Kotesovec, May 24 2020 *)
PROG
(PARI) {a(n) = sum(i=0, n^2, i!*polcoef(sum(j=0, n, x^j/j!)^n, i))} \\ Seiichi Manyama, May 19 2019
CROSSREFS
Row sums of A234574.
Main diagonal of A308292.
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 04 2016
STATUS
approved
Rows of (Pascal's triangle - Losanitsch's triangle) (n >= 0, k >= 0).
+10
3
0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 2, 2, 2, 0, 0, 2, 4, 4, 2, 0, 0, 3, 6, 10, 6, 3, 0, 0, 3, 9, 16, 16, 9, 3, 0, 0, 4, 12, 28, 32, 28, 12, 4, 0, 0, 4, 16, 40, 60, 60, 40, 16, 4, 0, 0, 5, 20, 60, 100, 126, 100, 60, 20, 5, 0, 0, 5, 25, 80, 160, 226, 226, 160, 80, 25, 5, 0, 0, 6, 30, 110, 240
OFFSET
0,12
COMMENTS
Also number of linear unbranched n-4-catafusenes of C_{2v} symmetry.
Number of n-bead black-white reversible strings with k black beads; also binary grids; string is not palindromic. - Yosu Yurramendi, Aug 08 2008
The first seven columns are A004526, A002620, A006584, A032091, A032092, A032093, A032094. Row sums give essentially A032085. - Yosu Yurramendi, Aug 08 2008
From Álvar Ibeas, Jun 01 2020: (Start)
T(n, k) is the sum of odd-degree coefficients of the Gaussian polynomial [n, k]_q. The area below a NE lattice path between (0,0) and (k, n-k) is even for A034851(n, k) paths and odd for T(n, k) of them.
For a (non-reversible) string of k black and n-k white beads, consider the minimum number of bead transpositions needed to place the black ones to the left and the white ones to the right (in other words, the number of inversions of the permutation obtained by labeling the black beads by integers 1,...,k and the white ones by k+1,...,n, in the same order they take on the string). It is even for A034851(n, k) strings and odd for T(n, k) cases.
(End)
LINKS
Johann Cigler, Some remarks on Rogers-Szegö polynomials and Losanitsch's triangle, arXiv:1711.03340 [math.CO], 2017.
S. J. Cyvin, B. N. Cyvin, and J. Brunvoll, Unbranched catacondensed polygonal systems containing hexagons and tetragons, Croatica Chem. Acta, 69 (1996), 757-774.
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)
N. J. A. Sloane, Classic Sequences
FORMULA
Equals (A007318-A051159)/2. - Yosu Yurramendi, Aug 08 2008
T(n, k) = T(n - 1, k - 1) + T(n - 1, k); except when n is even and k odd, in which case T(n, k) = A034851(n, k) = T(n - 1, k - 1) + A034841(n - 1, k) = A034841(n - 1, k - 1) + T(n - 1, k) = C(n, k) / 2. - Álvar Ibeas, Jun 01 2020
EXAMPLE
Triangle begins:
0;
0 0;
0 1 0;
0 1 1 0;
0 2 2 2 0;
0 2 4 4 2 0;
...
MATHEMATICA
nmax = 12; t[n_?EvenQ, k_?EvenQ] := (Binomial[n, k] - Binomial[n/2, k/2])/ 2; t[n_?EvenQ, k_?OddQ] := Binomial[n, k]/2; t[n_?OddQ, k_?EvenQ] := (Binomial[n, k] - Binomial[(n-1)/2, k/2])/2; t[n_?OddQ, k_?OddQ] := (Binomial[n, k] - Binomial[(n-1)/2, (k-1)/2])/2; Flatten[ Table[t[n, k], {n, 0, nmax}, {k, 0, n}]] (* Jean-François Alcover, Nov 15 2011, after Yosu Yurramendi *)
PROG
(Haskell)
a034852 n k = a034852_tabl !! n !! k
a034852_row n = a034852_tabl !! n
a034852_tabl = zipWith (zipWith (-)) a007318_tabl a034851_tabl
-- Reinhard Zumkeller, Mar 24 2012
CROSSREFS
Essentially the same as A034877.
KEYWORD
nonn,tabl,easy,nice
EXTENSIONS
More terms from James A. Sellers, May 04 2000
STATUS
approved

Search completed in 0.015 seconds