Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a035019 -id:a035019
Displaying 1-10 of 16 results found. page 1 2
     Sort: relevance | references | number | modified | created      Format: long | short | data
A357112 a(n) = A035019(n)/6 for n > 0. +20
3
1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 4, 2, 2, 1, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 4, 2, 1, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 1, 2, 3, 2, 2, 2, 2, 4, 2, 2, 1, 2, 2, 2, 2, 1, 2, 4, 2, 1, 4, 2, 2, 4, 2, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
LINKS
CROSSREFS
KEYWORD
nonn
AUTHOR
Hugo Pfoertner, Sep 11 2022
STATUS
approved
A004016 Theta series of planar hexagonal lattice A_2.
(Formerly M4042)
+10
311
1, 6, 0, 6, 6, 0, 0, 12, 0, 6, 0, 0, 6, 12, 0, 0, 6, 0, 0, 12, 0, 12, 0, 0, 0, 6, 0, 6, 12, 0, 0, 12, 0, 0, 0, 0, 6, 12, 0, 12, 0, 0, 0, 12, 0, 0, 0, 0, 6, 18, 0, 0, 12, 0, 0, 0, 0, 12, 0, 0, 0, 12, 0, 12, 6, 0, 0, 12, 0, 0, 0, 0, 0, 12, 0, 6, 12, 0, 0, 12, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.
a(n) is the number of integer solutions to x^2 + x*y + y^2 = n (or equivalently x^2 - x*y + y^2 = n). - Michael Somos, Sep 20 2004
a(n) is the number of integer solutions to x^2 + y^2 + z^2 = 2*n where x + y + z = 0. - Michael Somos, Mar 12 2012
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (the present sequence), b(q) (A005928), c(q) (A005882).
a(n) = 6*A002324(n) if n>0, and A002324 is multiplicative, thus a(1)*a(m*n) = a(n)*a(m) if n>0, m>0 are relatively prime. - Michael Somos, Mar 17 2019
REFERENCES
B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 171, Entry 28.
Harvey Cohn, Advanced Number Theory, Dover Publications, Inc., 1980, p. 89. Ex. 18.
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 111.
M. N. Huxley, Area, Lattice Points and Exponential Sums, Oxford, 1996; p. 236.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)
S. Ahlgren, The sixth, eighth, ninth and tenth powers of Ramanujan's theta function, Proc. Amer. Math. Soc., 128 (1999), 1333-1338; F_3(q).
J. M. Borwein and P. B. Borwein, A cubic counterpart of Jacobi's identity and the AGM, Trans. Amer. Math. Soc., 323 (1991), no. 2, 691-701. MR1010408 (91e:33012) see page 695.
G. L. Hall, Comment on the paper "Theta series and magic numbers for diamond and certain ionic crystal structures" [J. Math. Phys. 28, 1653 (1987)]. Journal of Mathematical Physics; Sep. 1988, Vol. 29 Issue 9, pp. 2090-2092. - From N. J. A. Sloane, Dec 18 2012
M. D. Hirschhorn, Three classical results on representations of a number, Séminaire Lotharingien de Combinatoire, B42f (1999), 8 pp.
Christian Kassel and Christophe Reutenauer, The zeta function of the Hilbert scheme of n points on a two-dimensional torus, arXiv:1505.07229v3 [math.AG], 2015. [Note that a later version of this paper has a different title and different contents, and the number-theoretical part of the paper was moved to the publication which is next in this list.]
Christian Kassel and Christophe Reutenauer, Complete determination of the zeta function of the Hilbert scheme of n points on a two-dimensional torus, arXiv:1610.07793 [math.NT], 2016.
Masao Koike, Modular forms on non-compact arithmetic triangle groups, Unpublished manuscript [Extensively annotated with OEIS A-numbers by N. J. A. Sloane, Feb 14 2021. I wrote 2005 on the first page but the internal evidence suggests 1997.]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references).
N. J. A. Sloane, Tables of Sphere Packings and Spherical Codes, IEEE Trans. Information Theory, vol. IT-27, 1981 pp. 327-338.
N. J. A. Sloane, Theta series and magic numbers for diamond and certain ionic crystal structures, J. Math. Phys. 28 (1987), 1653-1657.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
Expansion of a(q) in powers of q where a(q) is the first cubic AGM theta function.
Expansion of theta_3(q) * theta_3(q^3) + theta_2(q) * theta_2(q^3) in powers of q.
Expansion of phi(x) * phi(x^3) + 4 * x * psi(x^2) * psi(x^6) in powers of x where phi(), psi() are Ramanujan theta functions.
Expansion of (1 / Pi) integral_{0 .. Pi/2} theta_3(z, q)^3 + theta_4(z, q)^3 dz in powers of q^2. - Michael Somos, Jan 01 2012
Expansion of coefficient of x^0 in f(x * q, q / x)^3 in powers of q^2 where f(,) is Ramanujan's general theta function. - Michael Somos, Jan 01 2012
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u^2 - 3*v^2 - 2*u*w + 4*w^2. - Michael Somos, Jun 11 2004
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = (u1-u3) * (u3-u6) - (u2-u6)^2. - Michael Somos, May 20 2005
G.f. is a period 1 Fourier series which satisfies f(-1 / (3 t)) = 3^(1/2) (t/i) f(t) where q = exp(2 Pi i t). - Michael Somos, Sep 11 2007
G.f. A(x) satisfies A(x) + A(-x) = 2 * A(x^4), from Ramanujan.
G.f.: 1 + 6 * Sum_{k>0} x^k / (1 + x^k + x^(2*k)). - Michael Somos, Oct 06 2003
G.f.: Sum_( q^(n^2+n*m+m^2) ) where the sum (for n and m) extends over the integers. - Joerg Arndt, Jul 20 2011
G.f.: theta_3(q) * theta_3(q^3) + theta_2(q) * theta_2(q^3) = (eta(q^(1/3))^3 + 3 * eta(q^3)^3) / eta(q).
G.f.: 1 + 6*Sum_{n>=1} x^(3*n-2)/(1-x^(3*n-2)) - x^(3*n-1)/(1-x^(3*n-1)). - Paul D. Hanna, Jul 03 2011
a(3*n + 2) = 0, a(3*n) = a(n), a(3*n + 1) = 6 * A033687(n). - Michael Somos, Jul 16 2005
a(2*n + 1) = 6 * A033762(n), a(4*n + 2) = 0, a(4*n) = a(n), a(4*n + 1) = 6 * A112604(n), a(4*n + 3) = 6 * A112595(n). - Michael Somos, May 17 2013
a(n) = 6 * A002324(n) if n>0. a(n) = A005928(3*n).
Euler transform of A192733. - Michael Somos, Mar 12 2012
a(n) = (-1)^n * A180318(n). - Michael Somos, Sep 14 2015
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*Pi/sqrt(3) = 3.627598... (A186706). - Amiram Eldar, Oct 15 2022
EXAMPLE
G.f. = 1 + 6*x + 6*x^3 + 6*x^4 + 12*x^7 + 6*x^9 + 6*x^12 + 12*x^13 + 6*x^16 + ...
Theta series of A_2 on the standard scale in which the minimal norm is 2:
1 + 6*q^2 + 6*q^6 + 6*q^8 + 12*q^14 + 6*q^18 + 6*q^24 + 12*q^26 + 6*q^32 + 12*q^38 + 12*q^42 + 6*q^50 + 6*q^54 + 12*q^56 + 12*q^62 + 6*q^72 + 12*q^74 + 12*q^78 + 12*q^86 + 6*q^96 + 18*q^98 + 12*q^104 + 12*q^114 + 12*q^122 + 12*q^126 + 6*q^128 + 12*q^134 + 12*q^146 + 6*q^150 + 12*q^152 + 12*q^158 + ...
MAPLE
A004016 := proc(n)
local a, j ;
a := A033716(n) ;
for j from 0 to n/3 do
a := a+A089800(n-1-3*j)*A089800(j) ;
end do:
a;
end proc:
seq(A004016(n), n=0..49) ; # R. J. Mathar, Feb 22 2021
MATHEMATICA
a[ n_] := If[ n < 1, Boole[ n == 0 ], 6 DivisorSum[ n, KroneckerSymbol[ #, 3] &]]; (* Michael Somos, Nov 08 2011 *)
a[ n_] := SeriesCoefficient[ (QPochhammer[ q]^3 + 9 q QPochhammer[ q^9]^3) / QPochhammer[ q^3], {q, 0, n}]; (* Michael Somos, Nov 13 2014 *)
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^3] + EllipticTheta[ 2, 0, q] EllipticTheta[ 2, 0, q^3], {q, 0, n}]; (* Michael Somos, Nov 13 2014 *)
a[ n_] := Length @ FindInstance[ x^2 + x y + y^2 == n, {x, y}, Integers, 10^9]; (* Michael Somos, Sep 14 2015 *)
terms = 81; f[q_] = LatticeData["A2", "ThetaSeriesFunction"][-I Log[q]/Pi]; s = Series[f[q], {q, 0, 2 terms}]; CoefficientList[s, q^2][[1 ;; terms]] (* Jean-François Alcover, Jul 04 2017 *)
PROG
(PARI) {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); 6 * prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==3, 1, p%3==1, e+1, 1-e%2)))}; /* Michael Somos, May 20 2005 */ /* Editor's note: this is the most efficient program */
(PARI) {a(n) = if( n<0, 0, polcoeff( 1 + 6 * sum( k=1, n, x^k / (1 + x^k + x^(2*k)), x * O(x^n)), n))}; /* Michael Somos, Oct 06 2003 */
(PARI) {a(n) = if( n<1, n==0, 6 * sumdiv( n, d, kronecker( d, 3)))}; /* Michael Somos, Mar 16 2005 */
(PARI) {a(n) = if( n<1, n==0, 6 * sumdiv( n, d, (d%3==1) - (d%3==2)))}; /* Michael Somos, May 20 2005 */
(PARI) {a(n) = my(A); if( n<0, 0, n*=3; A = x * O(x^n); polcoeff( (eta(x + A)^3 + 3 * x * eta(x^9 + A)^3) / eta(x^3 + A), n))}; /* Michael Somos, May 20 2005 */
(PARI) {a(n) = if( n<1, n==0, qfrep([ 2, 1; 1, 2], n, 1)[n] * 2)}; /* Michael Somos, Jul 16 2005 */
(PARI) {a(n) = if( n<0, 0, polcoeff( 1 + 6 * sum( k=1, n, x^(3*k - 2) / (1 - x^(3*k - 2)) - x^(3*k - 1) / (1 - x^(3*k - 1)), x * O(x^n)), n))} /* Paul D. Hanna, Jul 03 2011 */
(Sage) ModularForms( Gamma1(3), 1, prec=81).0 ; # Michael Somos, Jun 04 2013
(Magma) Basis( ModularForms( Gamma1(3), 1), 81) [1]; /* Michael Somos, May 27 2014 */
(Magma) L := Lattice("A", 2); A<q> := ThetaSeries(L, 161); A; /* Michael Somos, Nov 13 2014 */
(Python)
from math import prod
from sympy import factorint
def A004016(n): return 6*prod(e+1 if p%3==1 else int(not e&1) for p, e in factorint(n).items() if p != 3) if n else 1 # Chai Wah Wu, Nov 17 2022
CROSSREFS
See also A035019.
Cf. A000007, A000122, A004015, A008444, A008445, A008446, A008447, A008448, A008449 (Theta series of lattices A_0, A_1, A_3, A_4, ...), A186706.
KEYWORD
nonn,nice,easy
AUTHOR
STATUS
approved
A002324 Number of divisors of n == 1 (mod 3) minus number of divisors of n == 2 (mod 3).
(Formerly M0016 N0002)
+10
71
1, 0, 1, 1, 0, 0, 2, 0, 1, 0, 0, 1, 2, 0, 0, 1, 0, 0, 2, 0, 2, 0, 0, 0, 1, 0, 1, 2, 0, 0, 2, 0, 0, 0, 0, 1, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 1, 3, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 2, 1, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 1, 2, 0, 0, 2, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 4, 0, 2, 0, 0, 0, 2, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 1, 2, 0, 2, 2, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,7
COMMENTS
Coefficients of Dedekind zeta function for the quadratic number field of discriminant -3. See Formula section for the general expression. - N. J. A. Sloane, Mar 22 2022
Coefficients in expansion of Dirichlet series Product_p (1 - (Kronecker(m,p) + 1)*p^(-s) + Kronecker(m,p) * p^(-2s))^(-1) for m = -3.
(Number of points of norm n in hexagonal lattice) / 6, n>0.
The hexagonal lattice is the familiar 2-dimensional lattice (A_2) in which each point has 6 neighbors. This is sometimes called the triangular lattice.
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 112, first display.
J. W. L. Glaisher, Table of the excess of the number of (3k+1)-divisors of a number over the number of (3k+2)-divisors, Messenger Math., 31 (1901), 64-72.
D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, pp. 7-10.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
G. E. Andrews, Three aspects of partitions, Séminaire Lotharingien de Combinatoire, B25f (1990), 1 p.
Hershel M. Farkas, On an arithmetical function, Ramanujan J., 8(3) (2004), 309-315.
Pavel Guerzhoy and Ka Lun Wong, Farkas' identities with quartic characters, arXiv:1905.06506 [math.NT], 2019.
Christian Kassel and Christophe Reutenauer, The zeta function of the Hilbert scheme of n points on a two-dimensional torus, arXiv:1505.07229v3 [math.AG], 2015. [A later version of this paper has a different title and different contents, and the number-theoretical part of the paper was moved to the publication below.]
Christian Kassel and Christophe Reutenauer, Complete determination of the zeta function of the Hilbert scheme of n points on a two-dimensional torus, arXiv:1610.07793 [math.NT], 2016.
Gabriele Nebe and N. J. A. Sloane, Home page for hexagonal (or triangular) lattice A2.
José Manuel Rodríguez Caballero, Divisors on overlapped intervals and multiplicative functions, arXiv:1709.09621 [math.NT], 2017.
FORMULA
From N. J. A. Sloane, Mar 22 2022 (Start):
The Dedekind zeta function DZ_K(s) for a quadratic field K of discriminant D is as follows.
Here m is defined by K = Q(sqrt(m)) (so m=D/4 if D is a multiple of 4, otherwise m=D).
DZ_K(s) is the product of three terms:
(a) Product_{odd primes p | D} 1/(1-1/p^s)
(b) Product_{odd primes p such that (D|p) = -1} 1/(1-1/p^(2s))
(c) Product_{odd primes p such that (D|p) = 1} 1/(1-1/p^s)^2
and if m is
0,1,2,3,4,5,6,7 mod 8, the prime 2 is to be included in term
-,c,a,a,-,b,a,a, respectively.
For Maple (and PARI) implementations, see link. (End)
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u^2 - 3*v^2 + 4*w^2 - 2*u*w + w - v. - Michael Somos, Jul 20 2004
Has a nice Dirichlet series expansion, see PARI line.
G.f.: Sum_{k>0} x^k/(1+x^k+x^(2*k)). - Vladeta Jovovic, Dec 16 2002
a(3*n + 2) = 0, a(3*n) = a(n), a(3*n + 1) = A033687(n). - Michael Somos, Apr 04 2003
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = (u1 - u3)*(u3 - u6) - (u2 - u6)^2. - Michael Somos, May 20 2005
Multiplicative with a(3^e) = 1, a(p^e) = e+1 if p == 1 (mod 3), a(p^e) = (1+(-1)^e)/2 if p == 2 (mod 3). - Michael Somos, May 20 2005
G.f.: Sum_{k>0} x^(3*k - 2) / (1 - x^(3*k - 2)) - x^(3*k - 1) / (1 - x^(3*k - 1)). - Michael Somos, Nov 02 2005
G.f.: Sum_{n >= 1} q^(n^2)(1-q)(1-q^2)...(1-q^(n-1))/((1-q^(n+1))(1-q^(n+2))...(1-q^(2n))). - Jeremy Lovejoy, Jun 12 2009
a(n) = A001817(n) - A001822(n). - R. J. Mathar, Mar 31 2011
A004016(n) = 6*a(n) unless n=0.
Dirichlet g.f.: zeta(s)*L(chi_2(3),s), with chi_2(3) the nontrivial Dirichlet character modulo 3 (A102283). - Ralf Stephan, Mar 27 2015
From Andrey Zabolotskiy, May 07 2018: (Start)
a(n) = Sum_{ m: m^2|n } A000086(n/m^2).
a(A003136(m)) > 0, a(A034020(m)) = 0 for all m. (End)
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(3*sqrt(3)) = 0.604599... (A073010). - Amiram Eldar, Oct 11 2022
EXAMPLE
G.f. = x + x^3 + x^4 + 2*x^7 + x^9 + x^12 + 2*x^13 + x^16 + 2*x^19 + 2*x^21 + ...
MAPLE
A002324 := proc(n)
A001817(n)-A001822(n) ;
end proc:
seq(A002324(n), n=1..100) ; # R. J. Mathar, Sep 25 2017
MATHEMATICA
dn12[n_]:=Module[{dn=Divisors[n]}, Count[dn, _?(Mod[#, 3]==1&)]-Count[ dn, _?(Mod[#, 3]==2&)]]; dn12/@Range[120] (* Harvey P. Dale, Apr 26 2011 *)
a[ n_] := If[ n < 1, 0, DivisorSum[ n, KroneckerSymbol[ -3, #] &]]; (* Michael Somos, Aug 24 2014 *)
Table[DirichletConvolve[DirichletCharacter[3, 2, m], 1, m, n], {n, 1, 30}] (* Steven Foster Clark, May 29 2019 *)
f[3, p_] := 1; f[p_, e_] := If[Mod[p, 3] == 1, e+1, (1+(-1)^e)/2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 17 2020 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( sum(k=1, n, x^k / (1 + x^k + x^(2*k)), x * O(x^n)), n))}; \\ Michael Somos
(PARI) {a(n) = if( n<1, 0, sumdiv(n, d, (d%3==1) - (d%3==2)))};
(PARI) {a(n) = local(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==3, 1, if( p%3==1, e+1, !(e%2))))))}; \\ Michael Somos, May 20 2005
(PARI) {a(n) = if( n<1, 0, qfrep([2, 1; 1, 2], n, 1)[n] / 3)}; \\ Michael Somos, Jun 05 2005
(PARI) {a(n) = if( n<1, 0, direuler(p=2, n, 1 / (1 - X) / (1 - kronecker(-3, p)*X))[n])}; \\ Michael Somos, Jun 05 2005
(PARI) my(B=bnfinit(x^2+x+1)); vector(100, n, #bnfisintnorm(B, n)) \\ Joerg Arndt, Jun 01 2024
(Haskell)
a002324 n = a001817 n - a001822 n -- Reinhard Zumkeller, Nov 26 2011
(Python)
from math import prod
from sympy import factorint
def A002324(n): return prod(e+1 if p%3==1 else int(not e&1) for p, e in factorint(n).items() if p != 3) # Chai Wah Wu, Nov 17 2022
CROSSREFS
Dedekind zeta functions for imaginary quadratic number fields of discriminants -3, -4, -7, -8, -11, -15, -19, -20 are A002324, A002654, A035182, A002325, A035179, A035175, A035171, A035170, respectively.
Dedekind zeta functions for real quadratic number fields of discriminants 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40 are A035187, A035185, A035194, A035195, A035199, A035203, A035188, A035210, A035211, A035215, A035219, A035192, respectively.
KEYWORD
easy,nonn,nice,mult
AUTHOR
EXTENSIONS
More terms from David Radcliffe
Somos D.g.f. replaced with correct version by Ralf Stephan, Mar 27 2015
STATUS
approved
A055664 Norms of Eisenstein-Jacobi primes. +10
27
3, 4, 7, 13, 19, 25, 31, 37, 43, 61, 67, 73, 79, 97, 103, 109, 121, 127, 139, 151, 157, 163, 181, 193, 199, 211, 223, 229, 241, 271, 277, 283, 289, 307, 313, 331, 337, 349, 367, 373, 379, 397, 409, 421, 433, 439, 457, 463, 487, 499, 523, 529, 541, 547, 571 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
These are the norms of the primes in the ring of integers a+b*omega, a and b rational integers, omega = (1+sqrt(-3))/2.
Let us say that an integer n divides a lattice if there exists a sublattice of index n. Example: 3 divides the hexagonal lattice. Then A003136 (Loeschian numbers) is the sequence of divisors of the hexagonal lattice. Say that n is a "prime divisor" if the index-n sublattice is not contained in any other sublattice except the original lattice itself. The present sequence gives the prime divisors of the hexagonal lattice. Similarly, A055025 (Norms of Gaussian primes) is the sequence of "prime divisors" of the square lattice. - Jean-Christophe Hervé, Dec 04 2006
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, A16.
L. W. Reid, The Elements of the Theory of Algebraic Numbers, MacMillan, NY, 1910, see Chap. VI.
LINKS
FORMULA
Consists of 3; rational primes == 1 (mod 3) [A002476]; and squares of rational primes == -1 (mod 3) [A003627^2].
EXAMPLE
There are 6 Eisenstein-Jacobi primes of norm 3, omega-omega^2 times one of the 6 units [ +-1, +-omega, +-omega^2 ] but only one up to equivalence.
MATHEMATICA
Join[{3}, Select[Range[600], (PrimeQ[#] && Mod[#, 6] == 1) || (PrimeQ[Sqrt[#]] && Mod[Sqrt[#], 3] == 2) & ]] (* Jean-François Alcover, Oct 09 2012, from formula *)
PROG
(PARI) is(n)=(isprime(n) && n%3<2) || (issquare(n, &n) && isprime(n) && n%3==2) \\ Charles R Greathouse IV, Apr 30 2013
CROSSREFS
Cf. A055665-A055668, A055025-A055029, A135461, A135462. See A004016 and A035019 for theta series of Eisenstein (or hexagonal) lattice.
The Z[sqrt(-5)] analogs are in A020669, A091727, A091728, A091729, A091730 and A091731.
KEYWORD
nonn,easy,nice
AUTHOR
N. J. A. Sloane, Jun 09 2000
EXTENSIONS
More terms from David Wasserman, Mar 21 2002
STATUS
approved
A038590 Sizes of clusters in hexagonal lattice A_2 centered at lattice point. +10
11
1, 7, 13, 19, 31, 37, 43, 55, 61, 73, 85, 91, 97, 109, 121, 127, 139, 151, 163, 169, 187, 199, 211, 223, 235, 241, 253, 265, 271, 283, 295, 301, 313, 337, 349, 361, 367, 379, 385, 397, 409, 421, 433, 439, 451, 463, 475, 499, 511, 517, 535, 547 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.
The sequence can be approximated by a linear function with a correction term. See link for the function and representation of the deviation. The structures in the difference function can also be set to music after scaling. Some MIDI examples are linked. - Hugo Pfoertner, Mar 16 2024
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 111.
B. K. Teo and N. J. A. Sloane, Atomic Arrangements and Electronic Requirements for Close-Packed Circular and Spherical Clusters, Inorganic Chemistry, 25 (1986), pp. 2315-2322. See Table IV.
LINKS
Hugo Pfoertner, A038590(n) - n*(30.1066 - 26.4407/n^0.0792978), Plot of difference to fit.
Hugo Pfoertner, Audio conversion of difference to fitted function, MIDI example 1.
Hugo Pfoertner, Audio conversion of difference to fitted function, MIDI example 2, terms starting at n=6000.
Hugo Pfoertner, Audio conversion of difference to fitted function, MIDI example 3, shifted scaling.
FORMULA
Unique(A038589). Or, partial sums of A035019.
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
STATUS
approved
A307014 List coordinates (x,y) of the points in an hexagonal grid, sorted first by radial coordinate r and in case of ties, by polar angle 0 <= phi < 2*Pi in a polar coordinate system. Sequence gives the first coordinate in a barycentric coordinate system. +10
8
0, 1, 0, -1, -1, 0, 1, 1, -1, -2, -1, 1, 2, 2, 0, -2, -2, 0, 2, 2, 1, -1, -2, -3, -3, -2, -1, 1, 2, 3, 3, 3, 0, -3, -3, 0, 3, 2, -2, -4, -2, 2, 4, 3, 1, -1, -3, -4, -4, -3, -1, 1, 3, 4, 4, 4, 0, -4, -4, 0, 4, 3, 2, -2, -3, -5, -5, -3, -2, 2, 3, 5, 5, 4, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,10
COMMENTS
Cartesian coordinates (x,y) of the grid points are converted to barycentric coordinates (i,j,k) by i = x - y/sqrt(3), j = 2*y/sqrt(3), k = x + y/sqrt(3). The sequence gives i. j is given in A307016, k is given in A307017.
The sorting by polar angle affects the grid points in the shells of size A035019, starting at indices given by A038590.
LINKS
Hugo Pfoertner, Table of n, a(n) for n = 0..9060, covering range r <= 50.
Hugo Pfoertner, Illustration of A307016 vs A307014, grid points.
Hugo Pfoertner, Illustration of A307016 vs A307014, spiral.
Hugo Pfoertner, Illustration of A307017 vs A307014, spiral.
PROG
(PARI) \\ See Link
\\ To create the data of this sequence load program from file and call
a307014_16(5, 4) \\ Hugo Pfoertner, Nov 07 2023
CROSSREFS
KEYWORD
sign,look
AUTHOR
Hugo Pfoertner, Mar 21 2019
STATUS
approved
A055667 Number of Eisenstein-Jacobi primes of norm n. +10
7
0, 0, 0, 6, 6, 0, 0, 12, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
These are the primes in the ring of integers a+b*omega, a and b rational integers, omega = (1+sqrt(-3))/2.
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, A16.
L. W. Reid, The Elements of the Theory of Algebraic Numbers, MacMillan, NY, 1910, see Chap. VI.
LINKS
FORMULA
a(n) = 6 * A055668(n). - Franklin T. Adams-Watters, May 05 2006
EXAMPLE
There are 6 Eisenstein-Jacobi primes of norm 3, omega-omega^2 times one of the 6 units [ +-1, +-omega, +-omega^2 ] but only one up to equivalence.
MATHEMATICA
a[3] = 6; a[p_ /; PrimeQ[p] && Mod[p, 6] == 1] = 12; a[n_ /; PrimeQ[p = Sqrt[n]] && Mod[p, 3] == 2] = 6; a[_] = 0; Table[a[n], {n, 0, 99}] (* Jean-François Alcover, Oct 24 2013, after Franklin T. Adams-Watters *)
CROSSREFS
Cf. A055664-A055668, A055025-A055029, A135461, A135462. See A004016 and A035019 for theta series of Eisenstein (or hexagonal) lattice.
KEYWORD
nonn,easy,nice
AUTHOR
N. J. A. Sloane, Jun 09 2000
EXTENSIONS
More terms from Franklin T. Adams-Watters, May 05 2006
STATUS
approved
A307016 List coordinates (x,y) of the points in an hexagonal grid, sorted first by radial coordinate r and in case of ties, by polar angle 0 <= phi < 2*Pi in a polar coordinate system. Sequence gives the second coordinate in a barycentric coordinate system. +10
7
0, 0, 1, 1, 0, -1, -1, 1, 2, 1, -1, -2, -1, 0, 2, 2, 0, -2, -2, 1, 2, 3, 3, 2, 1, -1, -2, -3, -3, -2, -1, 0, 3, 3, 0, -3, -3, 2, 4, 2, -2, -4, -2, 1, 3, 4, 4, 3, 1, -1, -3, -4, -4, -3, -1, 0, 4, 4, 0, -4, -4, 2, 3, 5, 5, 3, 2, -2, -3, -5, -5, -3, -2, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,9
COMMENTS
Cartesian coordinates (x,y) of the grid points are converted to barycentric coordinates (i,j,k) by i = x - y/sqrt(3), j = 2*y/sqrt(3), k = x + y/sqrt(3). The sequence gives j. i is given in A307014, k is given in A307017.
LINKS
Hugo Pfoertner, Table of n, a(n) for n = 0..9060, covering range r <= 50.
PROG
(PARI) \\ See Link
\\ To create the data of this sequence load program from file and call
a307014_16(5, 6) \\ Hugo Pfoertner, Nov 07 2023
CROSSREFS
KEYWORD
sign,look
AUTHOR
Hugo Pfoertner, Mar 21 2019
STATUS
approved
A055668 Number of inequivalent Eisenstein-Jacobi primes of norm n. +10
6
0, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,8
COMMENTS
These are the primes in the ring of integers a+b*omega, a and b rational integers, omega = (1+sqrt(-3))/2.
Two primes are considered equivalent if they differ by multiplication by a unit (+-1, +-omega, +-omega^2).
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, A16.
L. W. Reid, The Elements of the Theory of Algebraic Numbers, MacMillan, NY, 1910, see Chap. VI.
LINKS
FORMULA
a(n) = 2 if n is a prime = 1 (mod 6); a(n) = 1 if n = 3 or n = p^2 where p is a prime = 2 (mod 3); a(n) = 0 otherwise. - Franklin T. Adams-Watters, May 05 2006
EXAMPLE
There are 6 Eisenstein-Jacobi primes of norm 3, omega-omega^2 times one of the 6 units [ +-1, +-omega, +-omega^2 ] but only one up to equivalence.
MATHEMATICA
a[3] = 1; a[p_ /; PrimeQ[p] && Mod[p, 6] == 1] = 2; a[n_ /; PrimeQ[p = Sqrt[n]] && Mod[p, 3] == 2] = 1; a[_] = 0; Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Aug 19 2013, after Franklin T. Adams-Watters *)
Table[Which[PrimeQ[n]&&Mod[n, 6]==1, 2, n==3, 1, PrimeQ[Sqrt[n]]&&Mod[ Sqrt[ n], 3] == 2, 1, True, 0], {n, 0, 110}] (* Harvey P. Dale, Jun 17 2017 *)
CROSSREFS
Cf. A055664-A055667, A055025-A055029. See A004016 and A035019 for theta series of Eisenstein (or hexagonal) lattice.
KEYWORD
nonn,easy,nice
AUTHOR
N. J. A. Sloane, Jun 09 2000
EXTENSIONS
More terms from Franklin T. Adams-Watters, May 05 2006
STATUS
approved
A307017 List coordinates (x,y) of the points in an hexagonal grid, sorted first by radial coordinate r and in case of ties, by polar angle 0 <= phi < 2*Pi in a polar coordinate system. Sequence gives the third coordinate in a barycentric coordinate system. +10
6
0, 1, 1, 0, -1, -1, 0, 2, 1, -1, -2, -1, 1, 2, 2, 0, -2, -2, 0, 3, 3, 2, 1, -1, -2, -3, -3, -2, -1, 1, 2, 3, 3, 0, -3, -3, 0, 4, 2, -2, -4, -2, 2, 4, 4, 3, 1, -1, -3, -4, -4, -3, -1, 1, 3, 4, 4, 0, -4, -4, 0, 5, 5, 3, 2, -2, -3, -5, -5, -3, -2, 2, 3, 5, 5, 4, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,8
COMMENTS
Cartesian coordinates (x,y) of the grid points are converted to barycentric coordinates (i,j,k) by i = x - y/sqrt(3), j = 2*y/sqrt(3), k = x + y/sqrt(3). The sequence gives k. i is given in A307014, j is given in A307016.
LINKS
Hugo Pfoertner, Table of n, a(n) for n = 0..9060, covering range r <= 50.
CROSSREFS
KEYWORD
sign,look
AUTHOR
Hugo Pfoertner, Mar 21 2019
STATUS
approved
page 1 2

Search completed in 0.016 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 18 20:50 EDT 2024. Contains 375284 sequences. (Running on oeis4.)