Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a036452 -id:a036452
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of iterations required to reach stationary value when repeatedly applying d, the number of divisors function (A000005).
+10
26
0, 0, 1, 2, 1, 3, 1, 3, 2, 3, 1, 4, 1, 3, 3, 2, 1, 4, 1, 4, 3, 3, 1, 4, 2, 3, 3, 4, 1, 4, 1, 4, 3, 3, 3, 3, 1, 3, 3, 4, 1, 4, 1, 4, 4, 3, 1, 4, 2, 4, 3, 4, 1, 4, 3, 4, 3, 3, 1, 5, 1, 3, 4, 2, 3, 4, 1, 4, 3, 4, 1, 5, 1, 3, 4, 4, 3, 4, 1, 4, 2, 3, 1, 5, 3, 3, 3, 4, 1, 5, 3, 4, 3, 3, 3, 5, 1, 4, 4
OFFSET
1,4
COMMENTS
Iterating d for n, the prestationary prime and finally the fixed value of 2 is reached in different number of steps; a(n) is the number of required iterations.
Each value n > 0 occurs an infinite number of times. For positions of first occurrences of n, see A251483. - Ivan Neretin, Mar 29 2015
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
B. L. Mayer and L. H. A. Monteiro, On the divisors of natural and happy numbers: a study based on entropy and graphs, AIMS Mathematics (2023) Vol. 8, Issue 6, 13411-13424.
FORMULA
a(n) = a(d(n)) + 1 if n > 2.
a(n) = 1 iff n is an odd prime.
EXAMPLE
If n=8, then d(8)=4, d(d(8))=3, d(d(d(8)))=2, which means that a(n)=3. In terms of the number of steps required for convergence, the distance of n from the d-equilibrium is expressed by a(n). A similar method is used in A018194.
MATHEMATICA
Table[ Length[ FixedPointList[ DivisorSigma[0, # ] &, n]] - 2, {n, 105}] (* Robert G. Wilson v, Mar 11 2005 *)
PROG
(PARI) for(x = 1, 150, for(a=0, 15, if(a==0, d=x, if(d<3, print(a-1), d=numdiv(d) )) ))
(PARI) a(n)=my(t); while(n>2, n=numdiv(n); t++); t \\ Charles R Greathouse IV, Apr 07 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved
a(n) = d(d(d(n))), the 3rd iterate of the number-of-divisors function with an initial value of n.
+10
15
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 3, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 2, 4, 2, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 4, 2, 2, 3, 3, 2, 3, 2, 3, 2, 2, 2, 4, 2, 2, 2, 3, 2, 4, 2, 3, 2, 2, 2, 4, 2, 3, 3, 2, 2, 3, 2, 3, 3
OFFSET
1,2
COMMENTS
The iterated d function rapidly converges to the fixed point 2.
From N. J. A. Sloane, Jun 02 2014: (Start)
The fourth iterate begins as follows:
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ... . (End)
REFERENCES
S. Ramanujan, Collected Papers, Ed. G. H. Hardy et al., Cambridge 1927; Chelsea, NY, 1962, p. 128. - N. J. A. Sloane, Jun 02 2014
LINKS
Enrique Pérez Herrero, Table of n, a(n) for n = 1..2000
R. Bellman and H. N. Shapiro, On a problem in additive number theory, Annals Math., 49 (1948), 333-340.
EXAMPLE
n = 5040, d(5040) = 60, d(d(5040)) = d(60) = 12 and a(5040) = d(12) = 6.
MATHEMATICA
f[n_]:=Length[Divisors[n]]; Table[Nest[f, n, 3], {n, 6!}] (* Vladimir Joseph Stephan Orlovsky, Mar 10 2010 *)
PROG
(PARI) a(n)=numdiv(numdiv(numdiv(n))) \\ Charles R Greathouse IV, Nov 16 2022
(Python)
from sympy import divisor_count
def A036450(n): return divisor_count(divisor_count(divisor_count(n))) # Chai Wah Wu, Nov 17 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved
a(n) = d(d(d(d(d(n))))), the 5th iterate of the number-of-divisors function d = A000005, with initial value n.
+10
9
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
OFFSET
1,2
COMMENTS
The iterated d function rapidly converges to fixed point 2. In the 5th iterated d-sequence, the first term different from the fixed point 2 appears at n = 5040. The 6th and further iterated sequences have very long initial segment of 2's. In the 6th one the first non-stationary term is a(293318625600) = 3. In such sequences any large value occurs infinite many times and constructible.
Differs from A007395 for n = 1, 5040, 7920, 8400, 9360, 10080, 10800, etc. - R. J. Mathar, Oct 20 2008
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
E.g., n = 96 and its successive iterates are 12, 6, 4, 3 and 2. The 5th term is a(96) = 2 is stationary (fixed).
MATHEMATICA
Table[Nest[DivisorSigma[0, #]&, n, 5], {n, 110}] (* Harvey P. Dale, Jun 18 2021 *)
PROG
(PARI) a(n)=my(d=numdiv); d(d(d(d(d(n))))) \\ Charles R Greathouse IV, Apr 07 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Previous Mathematica program replaced by Harvey P. Dale, Jun 18 2021
STATUS
approved
Prime powers with special exponents: q^(p-1) where p > 2 and q are prime numbers.
+10
7
4, 9, 16, 25, 49, 64, 81, 121, 169, 289, 361, 529, 625, 729, 841, 961, 1024, 1369, 1681, 1849, 2209, 2401, 2809, 3481, 3721, 4096, 4489, 5041, 5329, 6241, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12769, 14641, 15625, 16129, 17161, 18769, 19321
OFFSET
1,1
COMMENTS
Composite numbers with a prime number of divisors.
FORMULA
d(d(a(n))) = 2, where d(x) = tau(x) = sigma_0(x) is the number of divisors of x.
a(n) = (n log n)^2 + 2n^2 log n log log n + O(n^2 log n). - Charles R Greathouse IV, Apr 26 2012
(1 - A010051(a(n))) * A010055(a(n)) * A010051(A100995(a(n))+1) = 1. - Reinhard Zumkeller, Jun 05 2013
A036459(a(n)) = 2. - Ivan Neretin, Jan 25 2016
a(n) = A283262(n)^2. - Amiram Eldar, Jul 04 2022
Sum_{n>=1} 1/a(n) = Sum_{k>=2} P(prime(k)-1) = 0.54756961912815344341..., where P is the prime zeta function. - Amiram Eldar, Jul 10 2022
EXAMPLE
From powers of 2: 4,16,64,1024,4096,65536 are in the sequence since exponent+1 is also prime. The same powers of any prime base are also included.
MAPLE
N:= 10^5:
P1:= select(isprime, [2, seq(2*i+1, i=1..floor((sqrt(N)-1)/2))]):
P2:= select(`<=`, P1, 1+ilog2(N))[2..-1]:
S:= {seq(seq(p^(q-1), q = select(`<=`, P2, 1+floor(log[p](N)))), p=P1)}:
sort(convert(S, list)); # Robert Israel, May 18 2015
MATHEMATICA
specialPrimePowerQ[n_] := With[{f = FactorInteger[n]}, Length[f] == 1 && PrimeQ[f[[1, 1]]] && f[[1, 2]] > 1 && PrimeQ[f[[1, 2]] + 1]]; Select[Range[20000], specialPrimePowerQ] (* Jean-François Alcover, Jul 02 2013 *)
Select[Range[20000], ! PrimeQ[#] && PrimeQ[DivisorSigma[0, #]] &] (* Carlos Eduardo Olivieri, May 18 2015 *)
PROG
(PARI) for(n=1, 34000, if(isprime(n), n++, x=numdiv(n); if(isprime(x), print(n))))
(PARI) list(lim)=my(v=List(), t); lim=lim\1+.5; forprime(p=3, log(lim)\log(2) +1, t=p-1; forprime(q=2, lim^(1/t), listput(v, q^t))); vecsort(Vec(v))
\\ Charles R Greathouse IV, Apr 26 2012
(Haskell)
a009087 n = a009087_list !! (n-1)
a009087_list = filter ((== 1) . a010051 . (+ 1) . a100995) a000961_list
-- Reinhard Zumkeller, Jun 05 2013
(Magma) [n: n in [1..20000] | not IsPrime(n) and IsPrime(DivisorSigma(0, n))]; // Vincenzo Librandi, May 19 2015
(Python)
from sympy import primepi, integer_nthroot, primerange
def A036454(n):
def f(x): return int(n+x-sum(primepi(integer_nthroot(x, p-1)[0]) for p in primerange(3, x.bit_length()+1)))
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
return bisection(f, n, n) # Chai Wah Wu, Sep 12 2024
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
STATUS
approved
Numbers n such that d(d(n)) is an odd prime, where d(k) is the number of divisors of k.
+10
7
6, 8, 10, 14, 15, 21, 22, 26, 27, 33, 34, 35, 36, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 100, 106, 111, 115, 118, 119, 120, 122, 123, 125, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 168, 177, 178, 183
OFFSET
1,1
COMMENTS
Compare with sequence A007422 and A030513 -- the resemblance is rather strong. Still this sequence is different. For example, 36, 100, 120, and 168 are here.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
d(d(d(a(n)))) = 2 for all n.
A036459(a(n)) = 3. - Ivan Neretin, Jan 25 2016
EXAMPLE
a(15) = 39 and d(39) = 4, d(d(39)) = d(4) = 3 and d(d(d(39))) = 2. After 3 iteration the equilibrium is reached.
MAPLE
filter:= proc(n) local r;
r:= numtheory:-tau(numtheory:-tau(n));
r::odd and isprime(r)
end proc:
select(filter, [$1..1000]); # Robert Israel, Feb 02 2016
MATHEMATICA
fQ[n_] := Module[{d2 = DivisorSigma[0, DivisorSigma[0, n]]}, d2 > 2 && PrimeQ[d2]]; Select[Range[200], fQ] (* T. D. Noe, Jan 22 2013 *)
PROG
(PARI) is(n)=isprime(n=numdiv(numdiv(n))) && n>2 \\ Charles R Greathouse IV, Jan 22 2013
KEYWORD
nonn
AUTHOR
EXTENSIONS
Definition clarified by R. J. Mathar and Charles R Greathouse IV, Jan 22 2013
STATUS
approved
Numbers k for which exactly 5 applications of A000005 are needed to reach 2.
+10
4
60, 72, 84, 90, 96, 108, 126, 132, 140, 150, 156, 160, 180, 198, 200, 204, 220, 224, 228, 234, 240, 252, 260, 276, 288, 294, 300, 306, 308, 315, 336, 340, 342, 348, 350, 352, 360, 364, 372, 380, 392, 396, 414, 416, 420, 432, 444, 450, 460, 468, 476, 480
OFFSET
1,1
COMMENTS
Subsequences include A030630 (numbers with 12 divisors), A030636 (numbers with 18 divisors), A030638 (numbers with 20 divisors), A137491 (numbers with 28 divisors), etc. [edited by Jon E. Schoenfield, May 12 2018]
LINKS
FORMULA
d(d(d(d(d(a(n))))))) = 2 for all n.
A036459(a(n)) = 5. - Ivan Neretin, Jan 25 2016
EXAMPLE
a(13)=180; the successive iterates are 18, 6, 4, 3, and finally the 5th is 2;
a(3)=84; divisor numbers are 12, 6, 4, 3, and 2.
MAPLE
A036459:= proc(n) option remember;
if n <= 2 then 0 else 1 + procname(numtheory:-tau(n)) fi
end proc:
select(A036459 = 5, [$1..1000]); # Robert Israel, Jan 25 2016
MATHEMATICA
Select[Range@ 480, Last@ # == 2 && #[[5]] != 2 &@ NestList[DivisorSigma[0, #] &, #, 5] &] (* Michael De Vlieger, Jan 26 2016 *)
PROG
(PARI) is(n)=for(i=1, 4, n=numdiv(n); if(n<3, return(0))); numdiv(n)==2 \\ Charles R Greathouse IV, Sep 17 2015
KEYWORD
nonn
AUTHOR
EXTENSIONS
New name from Robert Israel, Jan 25 2016
STATUS
approved
a(n) is the cototient of n (A051953) iterated 4 times.
+10
4
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 4, 0, 2, 0, 4, 0, 4, 0, 4, 0, 4, 0, 8, 0, 4, 1, 4, 0, 4, 0, 8, 0, 4, 0, 8, 0, 4, 1, 8, 0, 8, 0, 4, 1, 4, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 16, 0, 8, 1, 12, 0, 16, 1, 8, 0, 8, 0, 16, 0, 8, 0, 8, 0, 8, 0, 8, 1, 16, 0, 16
OFFSET
1,18
COMMENTS
As iteration of A051953 progresses, powers of 2 may appear and it ends at fixed point 0. Analogous 4th iterates for A000005 or A000010 are A036452 and A049100.
It is assumed here that the value of A051953 at 0 is 0. - Antti Karttunen, Dec 22 2017
LINKS
EXAMPLE
n=50, n_1 = n - phi(n) = 50 - 20 = 30, n_2 = n_1 - Phi(n_1) = 30 - 8 = 22, n_3 = 22 - Phi(22) = 12, n_4 = n_3 - Phi(n_3) = 12 - 4 = 8 so the 50th term is 8.
MATHEMATICA
Array[Nest[# - EulerPhi@ # &, #, 4] &, 102] (* Michael De Vlieger, Dec 23 2017 *)
PROG
(PARI)
A051953(n) = if(!n, n, (n-eulerphi(n))); \\ With modification that returns zero for zero.
KEYWORD
nonn
AUTHOR
Labos Elemer, Jan 14 2000
STATUS
approved
Numbers k for which exactly 4 applications of A000005 are needed to reach 2.
+10
2
12, 18, 20, 24, 28, 30, 32, 40, 42, 44, 45, 48, 50, 52, 54, 56, 63, 66, 68, 70, 75, 76, 78, 80, 88, 92, 98, 99, 102, 104, 105, 110, 112, 114, 116, 117, 124, 128, 130, 135, 136, 138, 144, 147, 148, 152, 153, 154, 162, 164, 165, 170, 171, 172, 174, 175, 176, 182
OFFSET
1,1
COMMENTS
Similar to but different from A007624. Terms like 60, 72, 84, 90, 96, 108, 126, etc. are not present here.
LINKS
FORMULA
With d(n) = number of divisors(n), d(d(d(d(a(n))))) = 2 and d(d(d(a(n)))) > 2.
A036459(a(n)) = 4. - Ivan Neretin, Jan 25 2016
EXAMPLE
a(3)=20 and a(17)=63; for both x=20 and 63, d(x)=6 and d(d(x))=4, the 3rd iterates are 3 and the equilibrium value, i.e., 2 appears as 4th iterates.
PROG
(PARI) isok(n) = ((nd=numdiv(n)) != 2) && ((nd=numdiv(nd)) != 2) && ((nd=numdiv(nd)) != 2) && ((nd=numdiv(nd)) == 2); \\ Michel Marcus, Dec 30 2013 & Jan 26 2015
KEYWORD
nonn
AUTHOR
EXTENSIONS
New name (using new name for A036457 from Robert Israel) from Jon E. Schoenfield, May 12 2018
STATUS
approved
Sum of iterates of divisor number function A000005.
+10
2
1, 2, 5, 9, 7, 15, 9, 17, 14, 19, 13, 27, 15, 23, 24, 23, 19, 33, 21, 35, 30, 31, 25, 41, 30, 35, 36, 43, 31, 47, 33, 47, 42, 43, 44, 50, 39, 47, 48, 57, 43, 59, 45, 59, 60, 55, 49, 67, 54, 65, 60, 67, 55, 71, 64, 73, 66, 67, 61, 87, 63, 71, 78, 73, 74, 83, 69, 83, 78, 87, 73
OFFSET
1,2
LINKS
EXAMPLE
If n is prime then the iteration sequence is {p,2} and the sum is p+2. If n=30, then iterations of the d function are {30,8,4,3,2} and their sum is a(30)=47.
MAPLE
f:= proc(n) option remember;
if n <= 2 then n
else n + procname(numtheory:-tau(n));
fi
end proc:
map(f, [$1..80]); # Robert Israel, Nov 14 2016
MATHEMATICA
g[n_] := DivisorSigma[0, n]; f[n_] := Plus @@ Drop[ FixedPointList[g, n], -1]; Table[ f[n], {n, 71}] (* Robert G. Wilson v, Dec 16 2004 *)
KEYWORD
nonn
AUTHOR
Labos Elemer, Jan 14 2000
STATUS
approved
Infinitely refactorable numbers: numbers k such that each iteration under the map x -> A000005(x) produces a divisor of k.
+10
2
1, 2, 12, 24, 36, 60, 72, 84, 96, 108, 132, 156, 180, 204, 228, 240, 252, 276, 288, 348, 360, 372, 396, 444, 468, 480, 492, 504, 516, 564, 600, 612, 636, 640, 672, 684, 708, 720, 732, 792, 804, 828, 852, 864, 876, 936, 948, 972, 996, 1044, 1056, 1068, 1116, 1152
OFFSET
1,2
COMMENTS
In other words, let d^1(n) = A000005(n) and, for all positive integers k, let d^(k+1)(n) = A000005(d^k(n)). Sequence lists numbers n with the property that every such value of d^k(n) divides n.
A141586 is a subsequence. Is A110821 a subsequence?
Not a subsequence of A141551: 504 is the smallest term in this sequence not member of A141551.
a(n) is even for all n, since for any n >= 2, d^k(n) = 2 for some k. Proof: {d^k(n)} is a nonincreasing sequence of k, so it must stablize at a fixed point of the map x -> A000005(x), namely x = 1 or 2. But d^k(n) = 1 for some k implies that n = 1. - Jianing Song, Apr 20 2022
LINKS
EXAMPLE
9 has 3 divisors, and 9 is a multiple of 3. But 3 has 2 divisors, and 9 is not a multiple of 2. Hence, 9 does not belong to this sequence.
36 has 9 divisors, 9 has 3 divisors, 3 has 2 divisors, and 9, 3, and 2 are all divisors of 36. (Since 2 has 2 divisors, all further steps produce a value of 2.) Hence, 36 belongs to this sequence.
PROG
(PARI) is_A174457(n, d=n)=!until(d<3, n%(d=numdiv(d)) && return) \\ M. F. Hasler, Dec 05 2010, updated PARI syntax Apr 16 2022
CROSSREFS
Cf. A036459 (number of steps of the map), A000005 (d(n): number of divisors).
Cf. A010553 (d(d(n))), A036450 (d^3(n)), A036452 (d^4(n)), A036453 (d^5(n)).
Subsequence of A033950 (refactorable numbers: d(n) | n) and A141113 (d(d(n))| n).
KEYWORD
nonn
AUTHOR
Matthew Vandermast, Dec 04 2010
EXTENSIONS
Edited by M. F. Hasler, Apr 16 2022
STATUS
approved

Search completed in 0.007 seconds