Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a038941 -id:a038941
     Sort: relevance | references | number | modified | created      Format: long | short | data
Array read by ascending antidiagonals: p is term of row A(n) if and only if p is a prime and p is a quadratic residue modulo prime(n).
+10
7
2, 3, 3, 5, 7, 5, 2, 11, 13, 7, 3, 7, 19, 19, 11, 3, 5, 11, 29, 31, 13, 2, 13, 11, 23, 31, 37, 17, 5, 13, 17, 23, 29, 41, 43, 19, 2, 7, 17, 23, 31, 37, 59, 61, 23, 5, 3, 11, 19, 29, 37, 43, 61, 67, 29, 2, 7, 13, 17, 43, 43, 47, 53, 71, 73, 31, 3, 5, 13, 23, 19, 47, 53, 53, 67, 79, 79, 37
OFFSET
1,1
COMMENTS
p is term of A(n) <=> p is prime and there exists an integer q such that q^2 is congruent to p modulo prime(n).
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 1..10011 (the first 141 antidiagonals, flattened).
EXAMPLE
Note that the cross-references are hints, not assertions about identity.
.
[ n] [ p]
[ 1] [ 2] [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ... A000040
[ 2] [ 3] [ 3, 7, 13, 19, 31, 37, 43, 61, 67, 73, ... A007645
[ 3] [ 5] [ 5, 11, 19, 29, 31, 41, 59, 61, 71, 79, ... A038872
[ 4] [ 7] [ 2, 7, 11, 23, 29, 37, 43, 53, 67, 71, ... A045373
[ 5] [11] [ 3, 5, 11, 23, 31, 37, 47, 53, 59, 67, ... A056874
[ 6] [13] [ 3, 13, 17, 23, 29, 43, 53, 61, 79, 101, .. A038883
[ 7] [17] [ 2, 13, 17, 19, 43, 47, 53, 59, 67, 83, ... A038889
[ 8] [19] [ 5, 7, 11, 17, 19, 23, 43, 47, 61, 73, ... A106863
[ 9] [23] [ 2, 3, 13, 23, 29, 31, 41, 47, 59, 71, ... A296932
[10] [29] [ 5, 7, 13, 23, 29, 53, 59, 67, 71, 83, ... A038901
[11] [31] [ 2, 5, 7, 19, 31, 41, 47, 59, 67, 71, ... A267481
[12] [37] [ 3, 7, 11, 37, 41, 47, 53, 67, 71, 73, ... A038913
[13] [41] [ 2, 5, 23, 31, 37, 41, 43, 59, 61, 73, ... A038919
[14] [43] [11, 13, 17, 23, 31, 41, 43, 47, 53, 59, ... A106891
[15] [47] [ 2, 3, 7, 17, 37, 47, 53, 59, 61, 71, ... A267601
[16] [53] [ 7, 11, 13, 17, 29, 37, 43, 47, 53, 59, ... A038901
[17] [59] [ 3, 5, 7, 17, 19, 29, 41, 53, 59, 71, ... A374156
[18] [61] [ 3, 5, 13, 19, 41, 47, 61, 73, 83, 97, ... A038941
[19] [67] [17, 19, 23, 29, 37, 47, 59, 67, 71, 73, ... A106933
[20] [71] [ 2, 3, 5, 19, 29, 37, 43, 71, 73, 79, ...
[21] [73] [ 2, 3, 19, 23, 37, 41, 61, 67, 71, 73, ... A038957
[22] [79] [ 2, 5, 11, 13, 19, 23, 31, 67, 73, 79, ...
[23] [83] [ 3, 7, 11, 17, 23, 29, 31, 37, 41, 59, ...
[24] [89] [ 2, 5, 11, 17, 47, 53, 67, 71, 73, 79, ... A038977
[25] [97] [ 2, 3, 11, 31, 43, 47, 53, 61, 73, 79, ... A038987
.
Prime(n) is term of row n because for all n >= 1, n is a quadratic residue mod n.
MAPLE
A := proc(n, len) local c, L, a; a := 2; c := 0; L := NULL; while c < len do if NumberTheory:-QuadraticResidue(a, n) = 1 and isprime(a) then L := L, a; c := c + 1 fi; a := a + 1 od; [L] end: seq(print(A(ithprime(n), 10)), n = 1..25);
MATHEMATICA
f[m_, n_] := Block[{p = Prime@ m}, Union[ Join[{p}, Select[ Prime@ Range@ 22, JacobiSymbol[#, If[m > 1, p, 1]] == 1 &]]]][[n]]; Table[f[n, m -n +1], {m, 12}, {n, m, 1, -1}]
(* To read the array by descending antidiagonals, just exchange the first argument with the second in the function "f" called by the "Table"; i.e., Table[ f[m -n +1, n], {m, 12}, {n, m, 1, -1}] *)
PROG
(SageMath) # The function 'is_quadratic_residue' is defined in A373748.
def A373751_row(n, len):
return [a for a in range(len) if is_quadratic_residue(a, n) and is_prime(a)]
for p in prime_range(99): print([p], A373751_row(p, 100))
(PARI) A373751_row(n, LIM=99)={ my(q=prime(n)); [p | p <- primes([1, LIM]), issquare( Mod(p, q))] } \\ M. F. Hasler, Jun 29 2024
CROSSREFS
Family: A217831 (Euclid's triangle), A372726 (Legendre's triangle), A372877 (Jacobi's triangle), A372728 (Kronecker's triangle), A373223 (Gauss' triangle), A373748 (quadratic residue/nonresidue modulo n).
Cf. A374155 (column 1), A373748.
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Jun 28 2024
STATUS
approved
Primes of the form 3*x^2+5*x*y-3*y^2 (as well as 5*x^2+9*x*y+y^2).
+10
6
3, 5, 13, 19, 41, 47, 61, 73, 83, 97, 103, 107, 109, 113, 127, 131, 137, 149, 163, 167, 179, 197, 199, 229, 239, 241, 257, 263, 269, 271, 283, 293, 317, 347, 353, 367, 379, 431, 439, 443, 449, 461, 463, 479, 487, 491, 503, 563, 569, 571, 601, 607, 613, 619
OFFSET
1,1
COMMENTS
Discriminant = 61. Class = 1. Binary quadratic forms a*x^2 + b*x*y + c*y^2 have discriminant d = b^2 - 4ac.
A subsequence of (and may possibly coincide with) A038941. - R. J. Mathar, Jul 22 2008
3*x^2+5*x*y-3*y^2 and 5*x^2+9*x*y+y^2 are equivalent forms.
Also, primes of the form x^2 - 61y^2, of discriminant 244.
REFERENCES
Z. I. Borevich and I. R. Shafarevich, Number Theory.
LINKS
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS: Index to related sequences, programs, references. OEIS wiki, June 2014.
D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.
EXAMPLE
a(8) = 73 because we can write 73 = 3*4^2+5*4*5-3*5^2 (or 73 = 5*3^2+9*3*1+1^2).
MAPLE
select(p -> isprime(p) and nops([isolve(x^2 - 61*y^2 = p)])>0, [seq(2*i+1, i=1..1000)]); # Robert Israel, Jun 11 2014
MATHEMATICA
terms = 100; d = 61;
Table[3*x^2 + 5*x*y - 3*y^2, {x, 1, terms}, {y, Floor[(5 - Sqrt[d])*x/6], Ceiling[(5 + Sqrt[d])*x/6]}] // Flatten // Select[#, Positive[#] && PrimeQ[#]&]& // Union // Take[#, terms]& (* Jean-François Alcover, Feb 28 2019 *)
CROSSREFS
Cf. A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17). A141111, A141112 (d=65).
Primes in A243654.
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.
KEYWORD
nonn
AUTHOR
Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (sergarmor(AT)yahoo.es), Jun 14 2008
STATUS
approved

Search completed in 0.009 seconds