Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a050519 -id:a050519
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = 30*n.
+10
26
0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330, 360, 390, 420, 450, 480, 510, 540, 570, 600, 630, 660, 690, 720, 750, 780, 810, 840, 870, 900, 930, 960, 990, 1020, 1050, 1080, 1110, 1140, 1170, 1200, 1230, 1260, 1290, 1320, 1350, 1380, 1410, 1440
OFFSET
0,2
COMMENTS
Numbers divisible by 2, 3 and 5. - Robert Israel, Nov 19 2014
a(n) is the maximum score of a 10-pin n-frame bowling game and the maximum score of an n-pin 10-frame bowling game, given the rules: a strike is worth the number of pins in each frame plus the number of pins knocked down by the next two balls (except in the last frame), a spare is worth the number of pins in each frame plus the number of pins knocked down by the next ball (except in the last frame), and if a strike or spare is earned in the last frame then the player must continue to throw balls until they have thrown 3 balls in the last frame. - Iain Fox, Mar 02 2018
LINKS
Eric Weisstein's World of Mathematics, Bowling
Wikipedia, Ten-pin bowling
FORMULA
G.f.: 30*x/(x-1)^2; a(n) = 2*a(n-1) - a(n-2). - Wesley Ivan Hurt, Nov 18 2014
a(n) = 2*A008597(n) = 3*A008592(n) = 5*A008588(n) = 6*A008587(n) = 10*A008585(n) = 15*A005843(n). - Omar E. Pol, Nov 24 2014
EXAMPLE
a(7) = 7 * 30 = 210.
MAPLE
A249674:=n->30*n: seq(A249674(n), n=0..50); # Wesley Ivan Hurt, Nov 18 2014
MATHEMATICA
30*Range[0, 59] (* Alonso del Arte, Nov 18 2014 *)
PROG
(Magma) [30*n : n in [0..50]]; // Wesley Ivan Hurt, Nov 18 2014
(PARI) vector(100, n, 30*(n-1)) \\ Derek Orr, Nov 18 2014
(PARI) first(n) = Vec(30*x/(x-1)^2 + O(x^n), -n) \\ Iain Fox, Mar 02 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Kaylan Purisima, Nov 03 2014
STATUS
approved
An arithmetic progression of at least 6 terms having the same value of phi starts at these numbers.
+10
3
583200, 1166400, 1749600, 2332800, 2916000, 3499200, 4082400, 4665600, 5248800, 5832000, 6415200, 6998400, 7581600, 8164800, 8748000, 9331200, 9914400, 10497600, 11080800, 11664000, 12247200, 12830400, 13413600, 13996800, 14580000, 15163200, 15746400
OFFSET
1,1
COMMENTS
From Mauro Fiorentini, Apr 12 2015 (Start):
The following are all the terms between 13413600 and 10^9 with increment <= 1000:
13996800, 14580000, 15163200, 15746400, 16329600, 16912800, 17496000, 18079200, 18662400, 19245600, 65621220, 85731240, 131242440, 165488430, 171462480, 196863660, 257193720, 262484880, 330976860, 342924960, 496465290, 504932430, 544924830, 661953720, 827442150, 892306830, 992930580.
(End)
If phi is constant on the arithmetic progression A = [x, x+d, ..., x+m*d], and k is an integer such that each prime factor of k divides either all members of A or no members of A, then phi is also constant on the arithmetic progression k*A = [x*k, x*k+d*k, ..., x*k+m*(d*k)]. - Robert Israel, Apr 12 2015
The a.p. of 7 terms starting at 1158419010 with increment 210 have the same value of phi. - Robert Israel, Apr 15 2015
a(n) = 583200*n for n <= 112, but a(113) = 65621220. - Robert Israel, May 10 2015
LINKS
Robert Israel, Table of n, a(n) for n = 1..114 (all the terms <= 6.6*10^7).
Tanya Khovanova, Non Recursions
Eric Weisstein's World of Mathematics, Totient function.
MAPLE
N:= 10^7: # to get all terms <= N
with(numtheory):
Res:= NULL:
phis:= {seq(phi(i), i=2..N)}:
for m in phis do
S:= convert(invphi(m), set);
if nops(S) < 6 then next fi;
for d from 0 to 4 do
Sd[d]:= select(t-> (t mod 5 = d), S, d);
nd:= nops(Sd[d]);
for i0 from 1 to nd-1 do
s0:= Sd[d][i0];
if s0 > N then break fi;
for i5 from i0+1 to nd do
s5:= Sd[d][i5];
incr:= (s5 - s0)/5;
if {s0+incr, s0+2*incr, s0+3*incr, s0+4*incr} subset S then
Res:= Res, [s0, incr];
fi
od
od;
od;
od:
sort([Res], (s, t)->s[1]<t[1]); # gives both A050518 and A050519 entries
map2(op, 1, %); # Robert Israel, Apr 16 2015
CROSSREFS
The increments are in A050519. The values of phi are in A050520.
KEYWORD
nonn
AUTHOR
Jud McCranie, Dec 28 1999
STATUS
approved

Search completed in 0.005 seconds