Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a056915 -id:a056915
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = A056915(n) mod 76057 mod 13.
+20
5
2, 7, 11, 10, 5, 9, 6, 3, 4, 0, 1, 12, 8, 8, 6, 10, 9, 6, 7, 10, 3, 6, 2, 9, 8, 1, 2, 2, 2, 8, 0, 5, 5, 2, 7, 11, 5, 2, 11, 0, 10, 8, 2, 7, 4, 10, 2, 0, 5, 12, 8, 11, 6, 7, 7, 11, 0, 5, 1, 12, 6, 4, 6, 7, 8, 1, 12, 0, 7, 2, 9
OFFSET
1,1
COMMENTS
A056915(n) mod 76057 mod 13 is a bijection from the set of the first 13 terms of A056915 to {0,1,2,3,4,5,6,7,8,9,10,11,12}.
One of the tests for primality described in the first reference when tests x and x is prime, searches a table T composed by the first 13 entries of A056915 to see if x is a strong pseudoprime to bases 2,3 and 5. A fast way to do that is to compute i = x mod 76057 mod 13, and compare x with T[i]. If x is not equal to T[i], x is prime.
Terms computed using table by Charles R Greathouse IV. See A056915.
LINKS
C. Pomerance, J. L. Selfridge, and S. S. Wagstaff, Jr., The pseudoprimes to 25*10^9, Mathematics of Computation, 35, 1980, pp. 1003-1026.
CROSSREFS
Cf. A055775.
KEYWORD
nonn
AUTHOR
Washington Bomfim, Mar 02 2012
STATUS
approved
A056915(n) mod 5228905 mod 17.
+20
2
3, 4, 13, 15, 8, 14, 9, 5, 0, 11, 16, 10, 2, 12, 7, 1, 6, 16, 3, 10, 5, 8, 7, 16, 6, 11, 13, 6, 10, 6, 11, 16, 9, 1, 1, 15, 5, 1, 14, 7, 15, 2, 14, 9, 2, 6, 14, 3, 3, 14, 12, 6, 2, 4, 10, 16, 6, 10, 9, 3, 3, 1, 7, 9, 11, 5
OFFSET
1,1
COMMENTS
A056915(n) mod 5228905 mod 17 is a bijection from the set of the first 17 terms of A056915 to {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}.
From an algorithm based on strong pseudoprimes to bases 2,3 and 5, and a table T with the first 17 terms of A056915, we can test if n is prime, odd n, 1 < n < 42550716781. When n is a prime, we check if n belongs to T. A fast way to do that is to compute i = n mod 5228905 mod 17 and compare n with T[i]. If n is not equal to T[i], n is prime.
Terms computed using table by Charles R Greathouse IV. See A056915.
CROSSREFS
KEYWORD
nonn
AUTHOR
Washington Bomfim, Mar 02 2012
STATUS
approved
Strong pseudoprimes to base 2.
+10
77
2047, 3277, 4033, 4681, 8321, 15841, 29341, 42799, 49141, 52633, 65281, 74665, 80581, 85489, 88357, 90751, 104653, 130561, 196093, 220729, 233017, 252601, 253241, 256999, 271951, 280601, 314821, 357761, 390937, 458989, 476971, 486737
OFFSET
1,1
COMMENTS
The number 2^k-1 is in the sequence iff k is in A054723 or in A001567. - Thomas Ordowski, Sep 02 2016
The number (2^k+1)/3 is in the sequence iff k is in A127956. - Davide Rotondo, Aug 13 2021
REFERENCES
R. K. Guy, Unsolved Problems Theory Numbers, A12.
P. Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 95.
LINKS
T. D. Noe, Table of n, a(n) for n = 1..10000 (using data from A001567)
Joerg Arndt, Matters Computational (The Fxtbook), section 39.10, pp. 786-792.
Chris Caldwell, Strong probable prime.
Eric Weisstein's World of Mathematics, Strong Pseudoprime.
OEIS Wiki, Strong Pseudoprime.
Wikipedia, Strong pseudoprime.
EXAMPLE
From Michael B. Porter, Sep 04 2016: (Start)
For k = 577, k-1 = 576 = 9*2^6. Since 2^(9*2^3) = 2^72 == -1 (mod 577), 577 passes the primality test, but since it is actually prime, it is not in the sequence.
For k = 3277, k-1 = 3276 = 819*2^2, and 2^(819*2) == -1 (mod 3277), so k passes the primality test, and k = 3277 = 29*113 is composite, so 3277 is in the sequence. (End)
MAPLE
A007814 := proc(n) padic[ordp](n, 2) ; end proc:
isStrongPsp := proc(n, b) local d, s, r; if type(n, 'even') or n<=1 then return false; elif isprime(n) then return false; else s := A007814(n-1) ; d := (n-1)/2^s ; if modp(b &^ d, n) = 1 then return true; else for r from 0 to s-1 do if modp(b &^ d, n) = n-1 then return true; end if; d := 2*d ; end do: return false; end if; end if; end proc:
isA001262 := proc(n) isStrongPsp(n, 2) ; end proc:
for n from 1 by 2 do if isA001262(n) then print(n); end if; end do:
# R. J. Mathar, Apr 05 2011
MATHEMATICA
sppQ[n_?EvenQ, _] := False; sppQ[n_?PrimeQ, _] := False; sppQ[n_, b_] := (s = IntegerExponent[n-1, 2]; d = (n-1)/2^s; If[PowerMod[b, d, n] == 1, Return[True], Do[If[PowerMod[b, d, n] == n-1, Return[True]]; d = 2*d, {s}]]); lst = {}; k = 3; While[k < 500000, If[sppQ[k, 2], Print[k]; AppendTo[lst, k]]; k += 2]; lst (* Jean-François Alcover, Oct 20 2011, after R. J. Mathar *)
PROG
(PARI)
isStrongPsp(n, b)={
my(s, d, r, bm) ;
if( (n% 2) ==0 || n <=1, return(0) ; ) ;
if(isprime(n), return(0) ; ) ;
s = valuation(n-1, 2) ;
d = (n-1)/2^s ;
bm = Mod(b, n)^d ;
if ( bm == Mod(1, n), return(1) ; ) ;
for(r=0, s-1,
bm = Mod(b, n)^d ;
if ( bm == Mod(-1, n),
return(1) ;
) ;
d *= 2;
) ;
return(0);
}
isA001262(n)={
isStrongPsp(n, 2)
}
{
for(n=1, 10000000000,
if(isA001262(n),
print(n)
) ;
) ;
} \\ R. J. Mathar, Mar 07 2012
(PARI) is_A001262(n, a=2)={ (bittest(n, 0) && !isprime(n) && n>8) || return; my(s=valuation(n-1, 2)); if(1==a=Mod(a, n)^(n>>s), return(1)); while(a!=-1 && s--, a=a^2); a==-1} \\ M. F. Hasler, Aug 16 2012
CROSSREFS
Cf. A001567 (pseudoprimes to base 2), A020229 (strong pseudoprimes to base 3), A020231 (base 5), A020233 (base 7).
Cf. A072276 (SPP to base 2 and 3), A215568 (SPP to base 2 and 5), A056915 (SPP to base 2,3 and 5), A074773 (SPP to base 2,3,5 and 7).
KEYWORD
nonn,nice
EXTENSIONS
More terms from David W. Wilson, Aug 15 1996
STATUS
approved
Strong pseudoprimes to base 3.
+10
25
121, 703, 1891, 3281, 8401, 8911, 10585, 12403, 16531, 18721, 19345, 23521, 31621, 44287, 47197, 55969, 63139, 74593, 79003, 82513, 87913, 88573, 97567, 105163, 111361, 112141, 148417, 152551, 182527, 188191, 211411, 218791, 221761, 226801
OFFSET
1,1
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..24767 (first 752 terms from R. J. Mathar)
Joerg Arndt, Matters Computational (The Fxtbook), section 39.10, pp. 786-792
Eric Weisstein's World of Mathematics, Strong Pseudoprime
MATHEMATICA
sppQ[n_?EvenQ, _] := False; sppQ[n_?PrimeQ, _] := False; sppQ[n_, b_] := (s = IntegerExponent[n-1, 2]; d = (n-1)/2^s; If[PowerMod[b, d, n] == 1, Return[True], Do[If[PowerMod[b, d*2^r, n] == n-1, Return[True]], {r, 0, s-1}]]); A020229 = {}; lst = {}; k = 3; While[k < 500000, If[sppQ[k, 3], Print[k]; AppendTo[lst, k]]; k += 2]; lst (* Jean-François Alcover, Oct 20 2011, after R. J. Mathar *)
PROG
(PARI) is_A020229(n, b=3)={ bittest(n, 0) || return; ispseudoprime(n) && return; my(d=(n-1)>>valuation(n-1, 2)); Mod(b, n)^d==1 || until(n-1<=d*=2, Mod(b, n)^d+1 || return(1))} \\ M. F. Hasler, Jul 19 2012
CROSSREFS
KEYWORD
nonn
STATUS
approved
Strong pseudoprimes to base 5.
+10
20
781, 1541, 5461, 5611, 7813, 13021, 14981, 15751, 24211, 25351, 29539, 38081, 40501, 44801, 53971, 79381, 100651, 102311, 104721, 112141, 121463, 133141, 141361, 146611, 195313, 211951, 216457, 222301, 251521, 289081, 290629, 298271, 315121
OFFSET
1,1
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..715 from R. J. Mathar)
Eric Weisstein's World of Mathematics, Strong Pseudoprime
MATHEMATICA
nmax = 400000; sppQ[n_?EvenQ, _] := False; sppQ[n_?PrimeQ, _] := False; sppQ[n_, b_] := (s = IntegerExponent[n-1, 2]; d = (n-1)/2^s; If[ PowerMod[b, d, n] == 1, Return[True], Do[If[PowerMod[b, d*2^r, n] == n-1, Return[True]], {r, 0, s - 1}]]); A020231 = {}; n = 1; While[n < nmax, n = n+2; If[sppQ[n, 5] == True, Print[n]; AppendTo[A020231, n]]]; A020231 (* Jean-François Alcover, Oct 20 2011, after R. J. Mathar *)
CROSSREFS
Cf. A005936, A001262 (base-2 SPP), A020229 (base-3 SPP), A215568 (SPP to bases 2 & 5), A215566 (SPP to bases 3 & 5), A056915 (SPP to bases 2, 3 & 5), A074773 (SPP to bases 2, 3, 5 & 7).
KEYWORD
nonn
STATUS
approved
Strong pseudoprimes to bases 2, 3, 5 and 7.
+10
11
3215031751, 118670087467, 307768373641, 315962312077, 354864744877, 457453568161, 528929554561, 546348519181, 602248359169, 1362242655901, 1871186716981, 2152302898747, 2273312197621, 2366338900801, 3343433905957, 3461715915661, 3474749660383, 3477707481751, 4341937413061, 4777422165601, 5537838510751
OFFSET
1,1
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
G. Jaeschke, On strong pseudoprimes to several bases, Mathematics of Computation, 61 (1993), 915-926.
Eric Weisstein's World of Mathematics, Miller's Primality Test
PROG
(PARI) sprp(n, b)=my(s=valuation(n-1, 2), d=Mod(b, n)^(n>>s)); if(d==1, return(1)); for(i=1, s-1, if(d==-1, return(1)); d=d^2; ); d==-1
is(n)=sprp(n, 2) && sprp(n, 3) && sprp(n, 5) && sprp(n, 7) && !isprime(n) \\ Charles R Greathouse IV, Sep 14 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Don Reble, Sep 07 2002
EXTENSIONS
b-file, link, and editing from Charles R Greathouse IV, Aug 14 2010
STATUS
approved

Search completed in 0.013 seconds