Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a067304 -id:a067304
     Sort: relevance | references | number | modified | created      Format: long | short | data
Row sums of triangle A067298 and of A067304.
+20
4
1, 3, 18, 160, 1752, 21504, 282304, 3867840, 54547200, 785255680, 11478167040, 169748686848, 2533556365312, 38094656593920, 576271774875648, 8761529890717696, 133776598692003840, 2050020136793604096
OFFSET
0,2
FORMULA
a(n)=sum(A067298(n, m), m=0..n ).
Bisection: a(2*k)= (k+1)*A067297(2*k)=: A067303(k), a(2*k+1)= (2*k+3)*A067297(2*k+1)/2 =: A067322(k), k>=0.
G.f.: ge(x^2) + x*go(x^2) with ge(x) g.f. of A067303 and go(x) g.f. of A067322.
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Feb 05 2002
STATUS
approved
Triangle of coefficients of polynomials used for g.f.s of columns of A067304.
+20
2
1, 3, 1, 3, 10, 3, 3, 10, 12, 3, 21, 70, 93, 60, 12, 48, 160, 219, 165, 72, 12, 507, 1690, 2343, 1872, 996, 336, 48, 1461, 4870, 6798, 5595, 3252, 1380, 384, 48, 17841, 59470, 83361, 69828, 42636, 20256, 7248, 1728
OFFSET
0,2
COMMENTS
The row polynomials p(n,y) := sum(a(n,m)y^m,m=0..n), n>=1, appear in the g.f.s for the n-th column of triangle A067304.
FORMULA
a(n, m)=[y^m](p(n, y)), n>=m>=1, a(0, 0)=1, else 0, where p(k, y) is, for k>=1, defined by the g.f. of the k-th column of triangle A067304(n, k).
EXAMPLE
{1}; {3,1}; {3,10,3}; {3,3,10,12}; ...
KEYWORD
nonn,tabl
AUTHOR
Wolfdieter Lang, Feb 05 2002
STATUS
approved
Second column of triangle A067304.
+20
1
1, 5, 36, 328, 3440, 39408, 478912, 6068480, 79315200, 1061628160, 14480086016, 200540018688, 2812618092544, 39867889037312, 570237130752000, 8219880968028160, 119293333282291712, 1741605394647416832
OFFSET
0,2
FORMULA
a(n)= A067304(n+1, 1) = A067297(n+1) - A064340(n+1), n>=0.
G.f.: 4*(3+c(4*x))*(c(4*x)^3)/(1+c(4*x))^4 with c(x) g.f. of A000108 (Catalan).
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Feb 05 2002
STATUS
approved
One-fourth of third column of triangle A067304.
+20
0
1, 8, 75, 796, 9176, 111936, 1421968, 18618560, 249542400, 3407171584, 47226230528, 662805371904, 9400304896000, 134517761982464, 1939837469085696, 28162286932246528, 411276783645753344
OFFSET
0,2
FORMULA
a(n)= A067304(n+2, 2)/4 = (A067297(n+2) - (A064340(n+2)+A064340(n+1)))/4, n>=0.
G.f.: (3+10c(4*x)+3*c(4*x)^2)*(c(4*x)^3)/(1+c(4*x))^4, with c(x) g.f. of A000108 (Catalan).
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Feb 05 2002
STATUS
approved
One-fourth of fourth column of triangle A067304.
+20
0
7, 71, 768, 8920, 109232, 1390800, 18237952, 244701440, 3343713024, 46374830848, 651170275328, 9238908291072, 132251092529152, 1907671386263552, 27701755840561152, 404632598092447744
OFFSET
0,1
FORMULA
a(n)= A067304(n+3, 3)/4 = (A067297(n+3)-(b(n+3)+b(n+2)+4*b(n+1)))/4, n>=0, with b(n) := A064340(n).
G.f.: 4(3+10*c(4*x)+12*c(4*x)^2+3*c(4*x)^3)*(c(4*x)^3)/(1+c(4*x))^4, with c(x) g.f. of A000108 (Catalan).
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Feb 05 2002
STATUS
approved
One sixteenth of fifth column of triangle A067304.
+20
0
16, 185, 2181, 26860, 342968, 4504944, 60509296, 827456576, 11482655232, 161302619392, 2289365653760, 32780329073664, 472951175022592, 6869148315201536, 100352220112662528, 1473672361011920896
OFFSET
0,1
FORMULA
a(n)= A067304(n+4, 4)/15 = (A067297(n+4)-sum(b(j)b(n+4-j), j=0..3))/16, n>=0, with b(n) := A064340(n).
G.f.: (21+70c(4*x)+93*c(4*x)^2+60*c(4*x)^3+12*c(4*x)^4)*(c(4*x)^3)/(1+c(4*x))^4, with c(x) g.f. of A000108 (Catalan).
EXAMPLE
21+70*y+93*y^2+60*y^3 = p(4,y), fifth row polynomial of triangle A067329.
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Feb 05 2002
STATUS
approved

Search completed in 0.007 seconds