Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a068293 -id:a068293
     Sort: relevance | references | number | modified | created      Format: long | short | data
First differences of A151723.
+10
19
0, 1, 6, 6, 18, 6, 18, 30, 42, 6, 18, 30, 54, 54, 42, 78, 90, 6, 18, 30, 54, 54, 54, 102, 150, 102, 42, 78, 138, 162, 114, 186, 186, 6, 18, 30, 54, 54, 54, 102, 150, 102, 54, 102, 174, 222, 198, 246, 342, 198, 42, 78, 138, 162, 162, 258, 402, 354, 162, 186
OFFSET
0,3
REFERENCES
S. M. Ulam, On some mathematical problems connected with patterns of growth of figures, pp. 215-224 of R. E. Bellman, ed., Mathematical Problems in the Biological Sciences, Proc. Sympos. Applied Math., Vol. 14, Amer. Math. Soc., 1962 (see Example 6, page 224).
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 0..4095 [First 1024 terms from David Applegate and N. J. A. Sloane]
David Applegate, The movie version
David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
David Applegate and N. J. A. Sloane, Table of n, A151724(n), A151723(n) for n = 0..1025
N. J. A. Sloane, Exciting Number Sequences (video of talk), Mar 05 2021.
EXAMPLE
When written as a triangle:
0,
1,
6,
6,18,
6,18,30,42,
6,18,30,54,54,42,78,90,
6,18,30,54,54,54,102,150,102,42,78,138,162,114,186,186,
...
Right border gives 0 together with A068293. - Omar E. Pol, Mar 19 2015
CROSSREFS
Cf. A151723, A170898 (after dividing by 6), A170899, A169759.
KEYWORD
nonn
AUTHOR
STATUS
approved
Square array A(n,k), n>=1, k>=1, read by antidiagonals: A(n,k) is the number of n-colorings of the square diagonal grid graph DG_(k,k).
+10
19
1, 0, 2, 0, 0, 3, 0, 0, 0, 4, 0, 0, 0, 24, 5, 0, 0, 0, 72, 120, 6, 0, 0, 0, 168, 6720, 360, 7, 0, 0, 0, 360, 935040, 126360, 840, 8, 0, 0, 0, 744, 325061760, 265035240, 1128960, 1680, 9, 0, 0, 0, 1512, 283192323840, 3322711053720, 17160407040, 6510000, 3024, 10
OFFSET
1,3
COMMENTS
The square diagonal grid graph DG_(n,n) has n^2 = A000290(n) vertices and 2*(n-1)*(2*n-1) = A002943(n-1) edges; see A212208 for example. The chromatic polynomial of DG_(n,n) has n^2+1 = A002522(n) coefficients.
This graph is also called the king graph. - Andrew Howroyd, Jun 25 2017
LINKS
Eric Weisstein's World of Mathematics, King Graph
EXAMPLE
Square array A(n,k) begins:
1, 0, 0, 0, 0, ...
2, 0, 0, 0, 0, ...
3, 0, 0, 0, 0, ...
4, 24, 72, 168, 360, ...
5, 120, 6720, 935040, 325061760, ...
6, 360, 126360, 265035240, 3322711053720, ...
7, 840, 1128960, 17160407040, 2949948395735040, ...
CROSSREFS
Columns 1-5 give: A000027, A052762 = 24*A000332, 24*A068250, 24*A068251, 24*A068252.
Rows n=1-16 give: A000007, A000038, 3*A000007, 4*A068293, 5*A068294, 6*A068295, 7*A068296, 8*A068297, 9*A068298, 10*A068299, 11*A068300, 12*A068301, 13*A068302, 14*A068303, 15*A068304, 16*A068305.
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, May 04 2012
STATUS
approved
a(n) = 2*3^n - 3*2^n + 1.
+10
10
0, 1, 7, 31, 115, 391, 1267, 3991, 12355, 37831, 115027, 348151, 1050595, 3164071, 9516787, 28599511, 85896835, 257887111, 774054547, 2322950071, 6970423075, 20914414951, 62749536307, 188261191831, 564808741315, 1694476555591
OFFSET
0,3
COMMENTS
Starting with offset 1 = binomial transform of A068293: (1, 6, 18, 42, 90, ...) and double binomial transform of (1, 5, 7, 5, 7, 5, ...). - Gary W. Adamson, Jan 13 2009
Number of pairs (A,B) where A and B are nonempty subsets of {1,2,...,n} and one of these subsets is a subset of the other. - For the case that one of these subsets is a proper subset of the other see a(n+1) in A260217. - If empty subsets are included, see A027649 (all subsets) and A056182 (proper subsets). - Manfred Boergens, Aug 02 2023
LINKS
Christian Ballot and Florian Luca, Prime factors of a^f(n)-1 with an irreducible polynomial f(x),New York J. Math. 12 (2006), 39-45 (electronic).
Christian Ballot and Florian Luca, Common prime factors of a^n-b and c^n-d, Unif. Distrib. Theory 2 (2007), no. 2, 19-34 (electronic).
FORMULA
a(n) = Sum_{i=1..n} i!*i^2*Stirling2(n,i)*(-1)^(n-i).
From Christian Ballot via R. K. Guy, Jan 13 2009: (Start)
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3);
G.f.: x*(1+x)/((1-x)*(2-x)*(3-x)). (End)
a(n) = 5*a(n-1) - 6*a(n-2) + 2, a(0)=0, a(1)=1. - Vincenzo Librandi, Nov 25 2010
E.g.f.: exp(x)*(1 - 3*exp(x) + 2*exp(2*x)). - Stefano Spezia, May 18 2024
MAPLE
a:=n->sum((3^(n-j-1)-2^(n-2-j))*12, j=0..n): seq(a(n), n=-1..24); # Zerinvary Lajos, Feb 11 2007
with (combinat):a:=n->stirling2(n, 3)+stirling2(n+1, 3): seq(a(n), n=1..26); # Zerinvary Lajos, Oct 07 2007
MATHEMATICA
Table[Sum[i!i^2 StirlingS2[n, i](-1)^(n - i), {i, 1, n}], {n, 0, 30}]
Table[2*3^n-3*2^n+1, {n, 0, 30}] (* or *) LinearRecurrence[{6, -11, 6}, {0, 1, 7}, 30] (* Harvey P. Dale, Dec 31 2013 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Mario Catalani (mario.catalani(AT)unito.it), Jan 01 2004
EXTENSIONS
Edited by N. J. A. Sloane, Jan 13 2009 at the suggestion of R. K. Guy; the concise definition was provided by Vladeta Jovovic, Jan 01 2004
STATUS
approved
a(n) = 16*(2^n - 1).
+10
6
0, 16, 48, 112, 240, 496, 1008, 2032, 4080, 8176, 16368, 32752, 65520, 131056, 262128, 524272, 1048560, 2097136, 4194288, 8388592, 16777200, 33554416, 67108848, 134217712, 268435440
OFFSET
0,2
FORMULA
a(n) = 2^(n+4) - 16.
a(n) = A173787(n+4, 4).
a(2*n) = A140504(n+2)*A028399(n).
a(n) = 3*a(n-1) - 2*a(n-2), a(0)=0, a(1)=16. - Vincenzo Librandi, Dec 28 2010
From G. C. Greubel, Jul 08 2021: (Start)
G.f.: 16*x/((1-x)*(1-2*x)).
E.g.f.: 16*(exp(2*x) - exp(x)). (End)
MATHEMATICA
16*(2^Range[0, 40] - 1) (* G. C. Greubel, Jul 08 2021 *)
PROG
(Magma) I:=[0, 16]; [n le 2 select I[n] else 3*Self(n-1) - 2*Self(n-2): n in [1..41]]; // G. C. Greubel, Jul 08 2021
(Sage) [16*(2^n -1) for n in (0..40)] # G. C. Greubel, Jul 08 2021
(Python)
def A175164(n): return (1<<n)-1<<4 # Chai Wah Wu, Jun 27 2023
CROSSREFS
Sequences of the form m*(2^n - 1): A000225 (m=1), A000918 (m=2), A068156 (m=3), A028399 (m=4), A068293 (m=6), A159741 (m=8), this sequence (m=16), A175165 (m=32), A175166 (m=64).
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Feb 28 2010
STATUS
approved
a(n) = 64*(2^n - 1).
+10
6
0, 64, 192, 448, 960, 1984, 4032, 8128, 16320, 32704, 65472, 131008, 262080, 524224, 1048512, 2097088, 4194240, 8388544, 16777152, 33554368, 67108800, 134217664, 268435392, 536870848, 1073741760
OFFSET
0,2
FORMULA
a(n) = 2^(n+6) - 64.
a(n) = A173787(n+6, 6).
a(2*n) = A175161(n)*A159741(n) for n > 0.
a(n) = 3*a(n-1) - 2*a(n-2), a(0)=0, a(1)=64. - Vincenzo Librandi, Dec 28 2010
From G. C. Greubel, Jul 08 2021: (Start)
G.f.: 64*x/((1-x)*(1-2*x)).
E.g.f.: 64*(exp(2*x) - exp(x)). (End)
MATHEMATICA
LinearRecurrence[{3, -2}, {0, 64}, 30] (* Harvey P. Dale, Apr 08 2015 *)
PROG
(Magma) I:=[0, 64]; [n le 2 select I[n] else 3*Self(n-1) - 2*Self(n-2): n in [1..41]]; // G. C. Greubel, Jul 08 2021
(Sage) [64*(2^n -1) for n in (0..40)] # G. C. Greubel, Jul 08 2021
(Python)
def A175166(n): return (1<<n)-1<<6 # Chai Wah Wu, Jun 27 2023
CROSSREFS
Sequences of the form m*(2^n - 1): A000225 (m=1), A000918 (m=2), A068156 (m=3), A028399 (m=4), A068293 (m=6), A159741 (m=8), A175164 (m=16), A175165 (m=32), this sequence (m=64).
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Feb 28 2010
STATUS
approved
a(n) = 32*(2^n - 1).
+10
5
0, 32, 96, 224, 480, 992, 2016, 4064, 8160, 16352, 32736, 65504, 131040, 262112, 524256, 1048544, 2097120, 4194272, 8388576, 16777184, 33554400, 67108832, 134217696, 268435424, 536870880
OFFSET
0,2
FORMULA
a(n) = 2^(n+5) - 32.
a(n) = A173787(n+5, 5).
a(n) = 3*a(n-1) - 2*a(n-2); a(0)=0, a(1)=32. - Vincenzo Librandi, Dec 28 2010
From G. C. Greubel, Jul 08 2021: (Start)
G.f.: 32*x/((1-x)*(1-2*x)).
E.g.f.: 32*(exp(2*x) - exp(x)). (End)
MATHEMATICA
32(2^Range[0, 30] -1) (* or *) LinearRecurrence[{3, -2}, {0, 32}, 30] (* Harvey P. Dale, Mar 23 2015 *)
PROG
(Magma) I:=[0, 32]; [n le 2 select I[n] else 3*Self(n-1) - 2*Self(n-2): n in [1..41]]; // G. C. Greubel, Jul 08 2021
(Sage) [32*(2^n -1) for n in (0..40)] # G. C. Greubel, Jul 08 2021
(Python)
def A175165(n): return (1<<n)-1<<5 # Chai Wah Wu, Jun 27 2023
CROSSREFS
Sequences of the form m*(2^n - 1): A000225 (m=1), A000918 (m=2), A068156 (m=3), A028399 (m=4), A068293 (m=6), A159741 (m=8), A175164 (m=16), this sequence (m=32), A175166 (m=64).
Cf. A173787.
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Feb 28 2010
STATUS
approved
Square array A(n,k), n>=1, k>=1, read by antidiagonals: A(n,k) is the number of n-colorings of the complete bipartite graph K_(k,k).
+10
5
0, 0, 2, 0, 2, 6, 0, 2, 18, 12, 0, 2, 42, 84, 20, 0, 2, 90, 420, 260, 30, 0, 2, 186, 1812, 2420, 630, 42, 0, 2, 378, 7332, 18500, 9750, 1302, 56, 0, 2, 762, 28884, 127220, 121590, 30702, 2408, 72, 0, 2, 1530, 112740, 825860, 1324470, 583422, 81032, 4104, 90
OFFSET
1,3
COMMENTS
The complete bipartite graph K_(n,n) has 2*n vertices and n^2 = A000290(n) edges. The chromatic polynomial of K_(n,n) has 2*n+1 coefficients.
A(n,k) is the number of pairs of strings of length k over an alphabet of size n such that the strings do not share any letter. - Lin Zhangruiyu, Aug 19 2022
LINKS
Eric Weisstein's World of Mathematics, Complete Bipartite Graph
FORMULA
A(n,k) = Sum_{j=1..k} (n-j)^k * S2(k,j) * Product_{i=0..j-1} (n-i).
A(n,n)/n = A282245(n).
EXAMPLE
A(3,1) = 6 because there are 6 3-colorings of the complete bipartite graph K_(1,1): 1-2, 1-3, 2-1, 2-3, 3-1, 3-2.
Square array A(n,k) begins:
0, 0, 0, 0, 0, 0, 0, ...
2, 2, 2, 2, 2, 2, 2, ...
6, 18, 42, 90, 186, 378, 762, ...
12, 84, 420, 1812, 7332, 28884, 112740, ...
20, 260, 2420, 18500, 127220, 825860, 5191220, ...
30, 630, 9750, 121590, 1324470, 13284630, 126657750, ...
MAPLE
A:= (n, k)-> add(Stirling2(k, j) *mul(n-i, i=0..j-1) *(n-j)^k, j=1..k):
seq(seq(A(n, 1+d-n), n=1..d), d=1..12);
MATHEMATICA
a[n_, k_] := Sum[(-1)^j*(n-j)^k*Pochhammer[-n, j]*StirlingS2[k, j], {j, 1, k}]; Table[a[n-k, k], {n, 1, 11}, {k, n-1, 1, -1}] // Flatten (* Jean-François Alcover, Dec 11 2013 *)
CROSSREFS
Rows n=1-3 give: A000004, A007395, A068293(k+1).
Columns k=1-2 give: A002378(n-1), A091940.
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Apr 30 2012
STATUS
approved
Accumulation array of A185738, by antidiagonals.
+10
3
1, 3, 4, 6, 10, 11, 10, 18, 25, 26, 15, 28, 42, 56, 57, 21, 40, 62, 90, 119, 120, 28, 54, 85, 128, 186, 246, 247, 36, 70, 111, 170, 258, 378, 501, 502, 45, 88, 140, 216, 335, 516, 762, 1012, 1013, 55, 108, 172, 266, 417, 660, 1030, 1530, 2035, 2036, 66, 130, 207, 320, 504, 810, 1305, 2056, 3066, 4082, 4083, 78, 154, 245, 378, 596, 966, 1587, 2590, 4106, 6138, 8177, 8178, 91
OFFSET
1,2
COMMENTS
This arrays is a member of a chain; see A185738.
FORMULA
T(n,k) = k*(4*(2^n-1)+(k-3)*n), k>=1, n>=1.
EXAMPLE
Northwest corner:
1....3....6....10....15
4....10...18...28....40
11...25...42...62....85
26...56...90...128...170
MATHEMATICA
(* See A185738 *)
f[n_, k_] := (k/2)*(4*(2^n - 1) + (k - 3)*n);
TableForm[Table[f[n, k], {n, 1, 10}, {k, 1, 10}]] (* Array A185739 *)
Table[f[n - k + 1, k], {n, 10}, {k, n, 1, -1}] // Flatten (* G. C. Greubel, Jul 11 2017 *)
CROSSREFS
Rows 1 to 4: A000217, A028562, A140675, 2*A098847
Columns 1 to 3: A000295, A000247, A068293.
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Feb 02 2011
STATUS
approved
Rectangular array T(m,k)= StirlingS2(k-1,m-1)*m! (The Coupon Collectors Problem)
+10
2
1, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 2, 6, 0, 0, 0, 2, 18, 0, 0, 0, 0, 2, 42, 24, 0, 0, 0, 0, 2, 90, 144, 0, 0, 0, 0, 0, 2, 186, 600, 120, 0, 0, 0, 0, 0, 2, 378, 2160, 1200, 0, 0, 0, 0, 0
OFFSET
1,5
COMMENTS
T(m,k) is the number of functions f:{1,2,...}->(1,2,...,m} such that the image of f[{1,2,...,k}] is {1,2,...,m} but the image of f[{1,2,...,k-1}] is not.
T(m,k)/m^k is the probability that a collector of m different objects will require exactly k trials (uniform random selection with replacement) to complete the collection.
FORMULA
O.g.f.: for row m: m!x^m/Product_{i=1...m-1}1-i*x
EXAMPLE
1 0 0 0 0 0 0 0 0 ...
0 2 2 2 2 2 2 2 2 ...
0 0 6 18 42 90 186 378 762 ...
0 0 0 24 144 600 2160 7224 23184 ...
0 0 0 0 120 1200 7800 42000 204120 ...
0 0 0 0 0 720 10800 100800 756000 ...
0 0 0 0 0 0 5040 105840 1340640 ...
0 0 0 0 0 0 0 40320 1128960 ...
0 0 0 0 0 0 0 0 362880 ...
MAPLE
A178923 := proc(m, k)
combinat[stirling2](k-1, m-1)*m! ;
end proc:
seq(seq(A178923(m, d-m), m=1..d-1), d=2..15) ; # R. J. Mathar, Jan 19 2024
MATHEMATICA
Table[Table[StirlingS2[k - 1, m - 1] m!, {k, 1, 10}], {m, 1, 10}] // Grid
CROSSREFS
Cf. A068293 (row m=3), A000142 (diagonal), A001804 (subdiagonal).
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Dec 29 2010
STATUS
approved

Search completed in 0.006 seconds