Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a078468 -id:a078468
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle read by rows: T(n,m), n >= 1, 1 <= m <= n, is number of partitions of the set {1,2,...,n} that have at most one block contained in {1,...,m}.
+10
5
1, 2, 1, 5, 4, 1, 15, 13, 8, 1, 52, 47, 35, 16, 1, 203, 188, 153, 97, 32, 1, 877, 825, 706, 515, 275, 64, 1, 4140, 3937, 3479, 2744, 1785, 793, 128, 1, 21147, 20270, 18313, 15177, 11002, 6347, 2315, 256, 1, 115975, 111835, 102678, 88033, 68303, 45368, 23073, 6817, 512, 1, 678570, 657423, 610989, 536882, 436297, 316305, 191866, 85475, 20195, 1024, 1
OFFSET
1,2
COMMENTS
Also, the maximum number of solutions to an exact cover problem with n items, of which m are secondary.
REFERENCES
D. E. Knuth, The Art of Computer Programming, Volume 4B, exercise 7.2.2.1--185, answer on page 468.
LINKS
Paolo Xausa, Table of n, a(n) for n = 1..11325 (rows 1..150 of the triangle, flattened).
FORMULA
T(n, 1) = Bell number (all set partitions) A000110(n);
T(n, n) = 1 when m=n (the only possibility is a single block);
T(n, n-1) = 2^{n-1} when m=n-1 (a single block or two blocks);
T(n, 2) = A078468(2).
In general, T(n, m) = Sum_{k=0..n-m} Stirling_2(n-m,k)*(k+1)^m.
EXAMPLE
Triangle begins:
[1],
[2, 1],
[5, 4, 1],
[15, 13, 8, 1],
[52, 47, 35, 16, 1],
[203, 188, 153, 97, 32, 1],
[877, 825, 706, 515, 275, 64, 1],
[4140, 3937, 3479, 2744, 1785, 793, 128, 1],
[21147, 20270, 18313, 15177, 11002, 6347, 2315, 256, 1],
[115975, 111835, 102678, 88033, 68303, 45368, 23073, 6817, 512, 1],
[678570, 657423, 610989, 536882, 436297, 316305, 191866, 85475, 20195, 1024, 1],
...
For example, if n=4, m=3, then T(4,3) = 8, because out of the A000110(4) = 15 set partitions of {1,2,3,4}, those that have 2 or more blocks contained in {1,2,3} are
{12,3,4},
{13,2,4},
{14,2,3},
{23,1,4},
{24,1,3},
{34,1,2},
{1,2,3,4},
while
{1234},
{123,4},
{124,3}
{134,2}
{234,1},
{12,34}
{13. 24}.
{14, 23}
do not.
MAPLE
with(combinat);
T:=proc(n, m) local k;
add(stirling2(n-m, k)*(k+1)^m, k=0..n-m);
end;
MATHEMATICA
A362924[n_, m_]:=Sum[StirlingS2[n-m, k](k+1)^m, {k, 0, n-m}];
Table[A362924[n, m], {n, 15}, {m, n}] (* Paolo Xausa, Dec 02 2023 *)
CROSSREFS
See A113547 and A362925 for other versions of this triangle.
Row sums give A005493.
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Aug 10 2023, based on an email from Don Knuth.
STATUS
approved
Triangle read by rows: T(n,m), n >= 0, 0 <= m <= n, is number of partitions of the set {1,2,...,n} that have at most one block contained in {1,...,m}.
+10
4
1, 1, 1, 2, 2, 1, 5, 5, 4, 1, 15, 15, 13, 8, 1, 52, 52, 47, 35, 16, 1, 203, 203, 188, 153, 97, 32, 1, 877, 877, 825, 706, 515, 275, 64, 1, 4140, 4140, 3937, 3479, 2744, 1785, 793, 128, 1, 21147, 21147, 20270, 18313, 15177, 11002, 6347, 2315, 256, 1, 115975, 115975, 111835, 102678, 88033, 68303, 45368, 23073, 6817, 512, 1
OFFSET
0,4
COMMENTS
A variant of A113547 and A362924. See those entries for further information.
LINKS
FORMULA
Sum_{k=0..n} (k+1) * T(n,k) = A040027(n+1). - Alois P. Heinz, Dec 02 2023
EXAMPLE
Triangle begins:
1;
1, 1;
2, 2, 1;
5, 5, 4, 1;
15, 15, 13, 8, 1;
52, 52, 47, 35, 16, 1;
203, 203, 188, 153, 97, 32, 1;
877, 877, 825, 706, 515, 275, 64, 1;
4140, 4140, 3937, 3479, 2744, 1785, 793, 128, 1;
21147, 21147, 20270, 18313, 15177, 11002, 6347, 2315, 256, 1;
115975, 115975, 111835, 102678, 88033, 68303, 45368, 23073, 6817, 512, 1;
...
MAPLE
T:= (n, k)-> add(Stirling2(n-k, j)*(j+1)^k, j=0..n-k):
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Dec 01 2023
MATHEMATICA
A362925[n_, m_]:=Sum[StirlingS2[n-m, k](k+1)^m, {k, 0, n-m}];
Table[A362925[n, m], {n, 0, 15}, {m, 0, n}] (* Paolo Xausa, Dec 04 2023 *)
CROSSREFS
Row sums are A000110(n+1).
Column k=0 gives A000110.
Column k=2 gives A078468(n-2) for n>=2.
T(n+j,n) give (for j=0-2): A000012, A000079, A007689.
T(2n,n) gives A367820.
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Aug 10 2023, based on an email from Don Knuth.
STATUS
approved

Search completed in 0.006 seconds