Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a083420 -id:a083420
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(2n) = 2*4^n-1, a(2n+1) = (2^(n+1)+1)^2; interlaces A083420 with A028400.
+20
2
1, 9, 7, 25, 31, 81, 127, 289, 511, 1089, 2047, 4225, 8191, 16641, 32767, 66049, 131071, 263169, 524287, 1050625, 2097151, 4198401, 8388607, 16785409, 33554431, 67125249, 134217727, 268468225, 536870911, 1073807361, 2147483647
OFFSET
0,2
COMMENTS
a(2n) = A085903(2n) = A083420(n).
Floretion Algebra Multiplication Program, FAMP Code: 4tesseq[A*B] with A = + .25'i + .25'j + .25'k + .25i' + .25j' + .25k' + .25'ii' + .25'jj' + .25'kk' + .25'ij' + .25'ik' + .25'ji' + .25'jk' + .25'ki' + .25'kj' + .25e and B = + .5'i + .5i' + 'ii' + e [Factor added to formula by Creighton Dement, Dec 11 2009]
FORMULA
G.f.: (-1-8*x+6*x^2+16*x^3) / ((1-2*x)*(x+1)*(2*x^2-1)).
From Colin Barker, May 21 2019: (Start)
a(n) = a(n-1) + 4*a(n-2) - 2*a(n-3) - 4*a(n-4) for n>3.
a(n) = ((-1)^(1+n) + 2^(1+n) + 2^((1+n)/2)*(1+(-1)^(1+n))).
(End)
PROG
(PARI) Vec((1 + 8*x - 6*x^2 - 16*x^3) / ((1 + x)*(1 - 2*x)*(1 - 2*x^2)) + O(x^35)) \\ Colin Barker, May 21 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Creighton Dement, May 19 2005
STATUS
approved
Binomial transform of 0, 1, 1, 7, 7, 31, 31, ..., zero followed by duplicated A083420.
+20
2
0, 1, 3, 13, 45, 151, 483, 1513, 4665, 14251, 43263, 130813, 394485, 1187551, 3570843, 10728913, 32219505, 96724051, 290303223, 871171813, 2614039725, 7843167751, 23531600403, 70598995513, 211805375145, 635432902651
OFFSET
0,3
FORMULA
a(n+1)-3a(n) = A099430(n).
O.g.f.: (3x^2-2x+1)x/((2x-1)(1+x)(3x-1)(1-x)). - R. J. Mathar, Jul 10 2008
a(n)+a(n+1)=A126644(n). - R. J. Mathar, Jul 10 2008
KEYWORD
nonn
AUTHOR
Paul Curtz, Jun 18 2008, corrected Jun 23 2008
EXTENSIONS
More terms from R. J. Mathar, Jul 10 2008
STATUS
approved
Interlaces A007583 with A083420.
+20
0
1, 1, 3, 7, 11, 31, 43, 127, 171, 511, 683, 2047, 2731, 8191, 10923, 32767, 43691, 131071, 174763, 524287, 699051, 2097151, 2796203, 8388607, 11184811, 33554431, 44739243, 134217727, 178956971, 536870911, 715827883, 2147483647, 2863311531
OFFSET
0,3
COMMENTS
Floretion Algebra Multiplication Program, FAMP Code: minseq[A*B] with A = + .25'i + .25i' + .25'ii' + .25'jj' + .25'kk' + .25'jk' + .25'kj' + .25e and B = + 'i + 'j - 2'k (apart from initial term and signs)
FORMULA
a(n) = 5*a(n-2) - 4*a(n-4); a(n) = (5*2^n+(-2)^n-8*(-1)^n-4)/12; g.f. (1+x-2*x^2+2*x^3)/((x-1)*(2*x+1)*(2*x-1)*(x+1))
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Creighton Dement, Aug 30 2007
STATUS
approved
Powers of 2: a(n) = 2^n.
(Formerly M1129 N0432)
+10
3232
1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592
OFFSET
0,2
COMMENTS
2^0 = 1 is the only odd power of 2.
Number of subsets of an n-set.
There are 2^(n-1) compositions (ordered partitions) of n (see for example Riordan). This is the unlabeled analog of the preferential labelings sequence A000670.
This is also the number of weakly unimodal permutations of 1..n + 1, that is, permutations with exactly one local maximum. E.g., a(4) = 16: 12345, 12354, 12453, 12543, 13452, 13542, 14532 and 15432 and their reversals. - Jon Perry, Jul 27 2003 [Proof: see next line! See also A087783.]
Proof: n must appear somewhere and there are 2^(n-1) possible choices for the subset that precedes it. These must appear in increasing order and the rest must follow n in decreasing order. QED. - N. J. A. Sloane, Oct 26 2003
a(n+1) is the smallest number that is not the sum of any number of (distinct) earlier terms.
Same as Pisot sequences E(1, 2), L(1, 2), P(1, 2), T(1, 2). See A008776 for definitions of Pisot sequences.
With initial 1 omitted, same as Pisot sequences E(2, 4), L(2, 4), P(2, 4), T(2, 4). - David W. Wilson
Not the sum of two or more consecutive numbers. - Lekraj Beedassy, May 14 2004
Least deficient or near-perfect numbers (i.e., n such that sigma(n) = A000203(n) = 2n - 1). - Lekraj Beedassy, Jun 03 2004. [Comment from Max Alekseyev, Jan 26 2005: All the powers of 2 are least deficient numbers but it is not known if there exists a least deficient number that is not a power of 2.]
Almost-perfect numbers referred to as least deficient or slightly defective (Singh 1997) numbers. Does "near-perfect numbers" refer to both almost-perfect numbers (sigma(n) = 2n - 1) and quasi-perfect numbers (sigma(n) = 2n + 1)? There are no known quasi-perfect or least abundant or slightly excessive (Singh 1997) numbers.
The sum of the numbers in the n-th row of Pascal's triangle; the sum of the coefficients of x in the expansion of (x+1)^n.
The Collatz conjecture (the hailstone sequence will eventually reach the number 1, regardless of which positive integer is chosen initially) may be restated as (the hailstone sequence will eventually reach a power of 2, regardless of which positive integer is chosen initially).
The only hailstone sequence which doesn't rebound (except "on the ground"). - Alexandre Wajnberg, Jan 29 2005
With p(n) as the number of integer partitions of n, p(i) is the number of parts of the i-th partition of n, d(i) is the number of different parts of the i-th partition of n, m(i,j) is the multiplicity of the j-th part of the i-th partition of n, one has: a(n) = Sum_{i = 1..p(n)} (p(i)! / (Product_{j=1..d(i)} m(i,j)!)). - Thomas Wieder, May 18 2005
The number of binary relations on an n-element set that are both symmetric and antisymmetric. Also the number of binary relations on an n-element set that are symmetric, antisymmetric and transitive.
The first differences are the sequence itself. - Alexandre Wajnberg and Eric Angelini, Sep 07 2005
a(n) is the largest number with shortest addition chain involving n additions. - David W. Wilson, Apr 23 2006
Beginning with a(1) = 0, numbers not equal to the sum of previous distinct natural numbers. - Giovanni Teofilatto, Aug 06 2006
For n >= 1, a(n) is equal to the number of functions f:{1, 2, ..., n} -> {1, 2} such that for a fixed x in {1, 2, ..., n} and a fixed y in {1, 2} we have f(x) != y. - Aleksandar M. Janjic and Milan Janjic, Mar 27 2007
Let P(A) be the power set of an n-element set A. Then a(n) is the number of pairs of elements {x,y} of P(A) for which x = y. - Ross La Haye, Jan 09 2008
a(n) is the number of different ways to run up a staircase with n steps, taking steps of sizes 1, 2, 3, ... and r (r <= n), where the order IS important and there is no restriction on the number or the size of each step taken. - Mohammad K. Azarian, May 21 2008
a(n) is the number of permutations on [n+1] such that every initial segment is an interval of integers. Example: a(3) counts 1234, 2134, 2314, 2341, 3214, 3241, 3421, 4321. The map "p -> ascents of p" is a bijection from these permutations to subsets of [n]. An ascent of a permutation p is a position i such that p(i) < p(i+1). The permutations shown map to 123, 23, 13, 12, 3, 2, 1 and the empty set respectively. - David Callan, Jul 25 2008
2^(n-1) is the largest number having n divisors (in the sense of A077569); A005179(n) is the smallest. - T. D. Noe, Sep 02 2008
a(n) appears to match the number of divisors of the modified primorials (excluding 2, 3 and 5). Very limited range examined, PARI example shown. - Bill McEachen, Oct 29 2008
Successive k such that phi(k)/k = 1/2, where phi is Euler's totient function. - Artur Jasinski, Nov 07 2008
A classical transform consists (for general a(n)) in swapping a(2n) and a(2n+1); examples for Jacobsthal A001045 and successive differences: A092808, A094359, A140505. a(n) = A000079 leads to 2, 1, 8, 4, 32, 16, ... = A135520. - Paul Curtz, Jan 05 2009
This is also the (L)-sieve transform of {2, 4, 6, 8, ..., 2n, ...} = A005843. (See A152009 for the definition of the (L)-sieve transform.) - John W. Layman, Jan 23 2009
a(n) = a(n-1)-th even natural number (A005843) for n > 1. - Jaroslav Krizek, Apr 25 2009
For n >= 0, a(n) is the number of leaves in a complete binary tree of height n. For n > 0, a(n) is the number of nodes in an n-cube. - K.V.Iyer, May 04 2009
Permutations of n+1 elements where no element is more than one position right of its original place. For example, there are 4 such permutations of three elements: 123, 132, 213, and 312. The 8 such permutations of four elements are 1234, 1243, 1324, 1423, 2134, 2143, 3124, and 4123. - Joerg Arndt, Jun 24 2009
Catalan transform of A099087. - R. J. Mathar, Jun 29 2009
a(n) written in base 2: 1,10,100,1000,10000,..., i.e., (n+1) times 1, n times 0 (A011557(n)). - Jaroslav Krizek, Aug 02 2009
Or, phi(n) is equal to the number of perfect partitions of n. - Juri-Stepan Gerasimov, Oct 10 2009
These are the 2-smooth numbers, positive integers with no prime factors greater than 2. - Michael B. Porter, Oct 04 2009
A064614(a(n)) = A000244(n) and A064614(m) < A000244(n) for m < a(n). - Reinhard Zumkeller, Feb 08 2010
a(n) is the largest number m such that the number of steps of iterations of {r - (largest divisor d < r)} needed to reach 1 starting at r = m is equal to n. Example (a(5) = 32): 32 - 16 = 16; 16 - 8 = 8; 8 - 4 = 4; 4 - 2 = 2; 2 - 1 = 1; number 32 has 5 steps and is the largest such number. See A105017, A064097, A175125. - Jaroslav Krizek, Feb 15 2010
a(n) is the smallest proper multiple of a(n-1). - Dominick Cancilla, Aug 09 2010
The powers-of-2 triangle T(n, k), n >= 0 and 0 <= k <= n, begins with: {1}; {2, 4}; {8, 16, 32}; {64, 128, 256, 512}; ... . The first left hand diagonal T(n, 0) = A006125(n + 1), the first right hand diagonal T(n, n) = A036442(n + 1) and the center diagonal T(2*n, n) = A053765(n + 1). Some triangle sums, see A180662, are: Row1(n) = A122743(n), Row2(n) = A181174(n), Fi1(n) = A181175(n), Fi2(2*n) = A181175(2*n) and Fi2(2*n + 1) = 2*A181175(2*n + 1). - Johannes W. Meijer, Oct 10 2010
Records in the number of prime factors. - Juri-Stepan Gerasimov, Mar 12 2011
Row sums of A152538. - Gary W. Adamson, Dec 10 2008
A078719(a(n)) = 1; A006667(a(n)) = 0. - Reinhard Zumkeller, Oct 08 2011
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=1, a(n) equals the number of 2-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
Equals A001405 convolved with its right-shifted variant: (1 + 2x + 4x^2 + ...) = (1 + x + 2x^2 + 3x^3 + 6x^4 + 10x^5 + ...) * (1 + x + x^2 + 2x^3 + 3x^4 + 6x^5 + ...). - Gary W. Adamson, Nov 23 2011
The number of odd-sized subsets of an n+1-set. For example, there are 2^3 odd-sized subsets of {1, 2, 3, 4}, namely {1}, {2}, {3}, {4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, and {2, 3, 4}. Also, note that 2^n = Sum_{k=1..floor((n+1)/2)} C(n+1, 2k-1). - Dennis P. Walsh, Dec 15 2011
a(n) is the number of 1's in any row of Pascal's triangle (mod 2) whose row number has exactly n 1's in its binary expansion (see A007318 and A047999). (The result of putting together A001316 and A000120.) - Marcus Jaiclin, Jan 31 2012
A204455(k) = 1 if and only if k is in this sequence. - Wolfdieter Lang, Feb 04 2012
For n>=1 apparently the number of distinct finite languages over a unary alphabet, whose minimum regular expression has alphabetic width n (verified up to n=17), see the Gruber/Lee/Shallit link. - Hermann Gruber, May 09 2012
First differences of A000225. - Omar E. Pol, Feb 19 2013
This is the lexicographically earliest sequence which contains no arithmetic progression of length 3. - Daniel E. Frohardt, Apr 03 2013
a(n-2) is the number of bipartitions of {1..n} (i.e., set partitions into two parts) such that 1 and 2 are not in the same subset. - Jon Perry, May 19 2013
Numbers n such that the n-th cyclotomic polynomial has a root mod 2; numbers n such that the n-th cyclotomic polynomial has an even number of odd coefficients. - Eric M. Schmidt, Jul 31 2013
More is known now about non-power-of-2 "Almost Perfect Numbers" as described in Dagal. - Jonathan Vos Post, Sep 01 2013
Number of symmetric Ferrers diagrams that fit into an n X n box. - Graham H. Hawkes, Oct 18 2013
Numbers n such that sigma(2n) = 2n + sigma(n). - Jahangeer Kholdi, Nov 23 2013
a(1), ..., a(floor(n/2)) are all values of permanent on set of square (0,1)-matrices of order n>=2 with row and column sums 2. - Vladimir Shevelev, Nov 26 2013
Numbers whose base-2 expansion has exactly one bit set to 1, and thus has base-2 sum of digits equal to one. - Stanislav Sykora, Nov 29 2013
A072219(a(n)) = 1. - Reinhard Zumkeller, Feb 20 2014
a(n) is the largest number k such that (k^n-2)/(k-2) is an integer (for n > 1); (k^a(n)+1)/(k+1) is never an integer (for k > 1 and n > 0). - Derek Orr, May 22 2014
If x = A083420(n), y = a(n+1) and z = A087289(n), then x^2 + 2*y^2 = z^2. - Vincenzo Librandi, Jun 09 2014
The mini-sequence b(n) = least number k > 0 such that 2^k ends in n identical digits is given by {1, 18, 39}. The repeating digits are {2, 4, 8} respectively. Note that these are consecutive powers of 2 (2^1, 2^2, 2^3), and these are the only powers of 2 (2^k, k > 0) that are only one digit. Further, this sequence is finite. The number of n-digit endings for a power of 2 with n or more digits id 4*5^(n-1). Thus, for b(4) to exist, one only needs to check exponents up to 4*5^3 = 500. Since b(4) does not exist, it is clear that no other number will exist. - Derek Orr, Jun 14 2014
The least number k > 0 such that 2^k ends in n consecutive decreasing digits is a 3-number sequence given by {1, 5, 25}. The consecutive decreasing digits are {2, 32, 432}. There are 100 different 3-digit endings for 2^k. There are no k-values such that 2^k ends in '987', '876', '765', '654', '543', '321', or '210'. The k-values for which 2^k ends in '432' are given by 25 mod 100. For k = 25 + 100*x, the digit immediately before the run of '432' is {4, 6, 8, 0, 2, 4, 6, 8, 0, 2, ...} for x = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...}, respectively. Thus, we see the digit before '432' will never be a 5. So, this sequence is complete. - Derek Orr, Jul 03 2014
a(n) is the number of permutations of length n avoiding both 231 and 321 in the classical sense which are breadth-first search reading words of increasing unary-binary trees. For more details, see the entry for permutations avoiding 231 at A245898. - Manda Riehl, Aug 05 2014
Numbers n such that sigma(n) = sigma(2n) - phi(4n). - Farideh Firoozbakht, Aug 14 2014
This is a B_2 sequence: for i < j, differences a(j) - a(i) are all distinct. Here 2*a(n) < a(n+1) + 1, so a(n) - a(0) < a(n+1) - a(n). - Thomas Ordowski, Sep 23 2014
a(n) counts n-walks (closed) on the graph G(1-vertex; 1-loop, 1-loop). - David Neil McGrath, Dec 11 2014
a(n-1) counts walks (closed) on the graph G(1-vertex; 1-loop, 2-loop, 3-loop, 4-loop, ...). - David Neil McGrath, Jan 01 2015
b(0) = 4; b(n+1) is the smallest number not in the sequence such that b(n+1) - Prod_{i=0..n} b(i) divides b(n+1) - Sum_{i=0..n} b(i). Then b(n) = a(n) for n > 2. - Derek Orr, Jan 15 2015
a(n) counts the permutations of length n+2 whose first element is 2 such that the permutation has exactly one descent. - Ran Pan, Apr 17 2015
a(0)-a(30) appear, with a(26)-a(30) in error, in tablet M 08613 (see CDLI link) from the Old Babylonian period (c. 1900-1600 BC). - Charles R Greathouse IV, Sep 03 2015
Subsequence of A028982 (the squares or twice squares sequence). - Timothy L. Tiffin, Jul 18 2016
A000120(a(n)) = 1. A000265(a(n)) = 1. A000593(a(n)) = 1. - Juri-Stepan Gerasimov, Aug 16 2016
Number of monotone maps f : [0..n] -> [0..n] which are order-increasing (i <= f(i)) and idempotent (f(f(i)) = f(i)). In other words, monads on the n-th ordinal (seen as a posetal category). Any monad f determines a subset of [0..n] that contains n, by considering its set of monad algebras = fixed points { i | f(i) = i }. Conversely, any subset S of [0..n] containing n determines a monad on [0..n], by the function i |-> min { j | i <= j, j in S }. - Noam Zeilberger, Dec 11 2016
Consider n points lying on a circle. Then for n>=2 a(n-2) gives the number of ways to connect two adjacent points with nonintersecting chords. - Anton Zakharov, Dec 31 2016
Satisfies Benford's law [Diaconis, 1977; Berger-Hill, 2017] - N. J. A. Sloane, Feb 07 2017
Also the number of independent vertex sets and vertex covers in the n-empty graph. - Eric W. Weisstein, Sep 21 2017
Also the number of maximum cliques in the n-halved cube graph for n > 4. - Eric W. Weisstein, Dec 04 2017
Number of pairs of compositions of n corresponding to a seaweed algebra of index n-1. - Nick Mayers, Jun 25 2018
The multiplicative group of integers modulo a(n) is cyclic if and only if n = 0, 1, 2. For n >= 3, it is a product of two cyclic groups. - Jianing Song, Jun 27 2018
k^n is the determinant of n X n matrix M_(i, j) = binomial(k + i + j - 2, j) - binomial(i+j-2, j), in this case k=2. - Tony Foster III, May 12 2019
Solutions to the equation Phi(2n + 2*Phi(2n)) = 2n. - M. Farrokhi D. G., Jan 03 2020
a(n-1) is the number of subsets of {1,2,...,n} which have an element that is the size of the set. For example, for n = 4, a(3) = 8 and the subsets are {1}, {1,2}, {2,3}, {2,4}, {1,2,3}, {1,3,4}, {2,3,4}, {1,2,3,4}. - Enrique Navarrete, Nov 21 2020
a(n) is the number of self-inverse (n+1)-order permutations with 231-avoiding. E.g., a(3) = 8: [1234, 1243, 1324, 1432, 2134, 2143, 3214, 4321]. - Yuchun Ji, Feb 26 2021
For any fixed k > 0, a(n) is the number of ways to tile a strip of length n+1 with tiles of length 1, 2, ... k, where the tile of length k can be black or white, with the restriction that the first tile cannot be black. - Greg Dresden and Bora Bursalı, Aug 31 2023
REFERENCES
Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 1016.
Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem, Mathematics and Computer Education Journal, Vol. 31, No. 1, pp. 24-28, Winter 1997.
Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §4.5 Logarithms and §8.1 Terminology, pp. 150, 264.
Paul J. Nahin, An Imaginary Tale: The Story of sqrt(-1), Princeton University Press, Princeton, NJ. 1998, pp. 69-70.
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 124.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
V. E. Tarakanov, Combinatorial problems on binary matrices, Combin. Analysis, MSU, 5 (1980), 4-15. (Russian)
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
LINKS
Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Juan S. Auli and Sergi Elizalde, Wilf equivalences between vincular patterns in inversion sequences, arXiv:2003.11533 [math.CO], 2020.
Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
Jonathan Beagley and Lara Pudwell, Colorful Tilings and Permutations, Journal of Integer Sequences, Vol. 24 (2021), Article 21.10.4.
Arno Berger and Theodore P. Hill, What is Benford's Law?, Notices, Amer. Math. Soc., 64:2 (2017), 132-134.
Tobias Boege and Thomas Kahle, Construction Methods for Gaussoids, arXiv:1902.11260 [math.CO], 2019.
Anicius Manlius Severinus Boethius, De arithmetica, Book 1, section 9.
Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
Peter J. Cameron, Notes on Counting, Peter Cameron's Blog, 15/05/2017.
CDLI, M 08613.
Giulio Cerbai, Anders Claesson, and Luca Ferrari, Stack sorting with restricted stacks, arXiv:1907.08142 [cs.DS], 2019.
V. Coll, M. Hyatt, C. Magnant, and H. Wang, Meander graphs and Frobenius seaweed Lie algebras II, Journal of Generalized Lie Theory and Applications 9 (1) (2015) 227.
M. Coons and H. Winning, Powers of Two Modulo Powers of Three, J. Int. Seq. 18 (2015) # 15.6.1.
Keneth Adrian P. Dagal and Jose Arnaldo B. Dris, A Criterion for Almost Perfect Numbers in Terms of the Abundancy Index, arXiv:1308.6767v1 [math.NT], Aug 14 2013.
V. Dergachev and A. Kirillov, Index of Lie algebras of seaweed type, J. Lie Theory 10 (2) (2000) 331-343.
Persi Diaconis, The distribution of leading digits and uniform distribution mod 1, Ann. Probability, 5, 1977, 72--81.
David Eppstein, Making Change in 2048, arXiv:1804.07396 [cs.DM], 2018.
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 18
Joël Gay and Vincent Pilaud, The weak order on Weyl posets, arXiv:1804.06572 [math.CO], 2018.
Daniele A. Gewurz and Francesca Merola, Sequences realized as Parker vectors of oligomorphic permutation groups, J. Integer Seqs., Vol. 6, 2003.
Hermann Gruber, Jonathan Lee and Jeffrey Shallit, Enumerating regular expressions and their languages, arXiv:1204.4982v1 [cs.FL], 2012.
Marcus Jaiclin, et al. Pascal's Triangle, Mod 2,3,5
J. W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, 4 (2001), #01.1.5.
P. A. MacMahon, Memoir on the Theory of the Compositions of Numbers, Phil. Trans. Royal Soc. London A, 184 (1893), 835-901.
Augustine O. Munagi, Integer Compositions and Higher-Order Conjugation, J. Int. Seq., Vol. 21 (2018), Article 18.8.5.
R. Ondrejka, Exact values of 2^n, n=1(1)4000, Math. Comp., 23 (1969), 456.
G. Pfeiffer, Counting Transitive Relations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.2.
Shingo Saito, Tatsushi Tanaka, and Noriko Wakabayashi, Combinatorial Remarks on the Cyclic Sum Formula for Multiple Zeta Values, J. Int. Seq. 14 (2011) # 11.2.4, Table 1.
Michael Z. Spivey and Laura L. Steil, The k-Binomial Transforms and the Hankel Transform, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.1.
J. Tanton, A Dozen Questions about the Powers of Two, Math Horizons, Vol. 8, pp. 5-10, September 2001.
G. Villemin's Almanac of Numbers, Puissances de 2
Eric Weisstein's World of Mathematics, Abundance
Eric Weisstein's World of Mathematics, Binomial Sums
Eric Weisstein's World of Mathematics, Binomial Transform
Eric Weisstein's World of Mathematics, Hailstone Number (Collatz Problem)
Eric Weisstein's World of Mathematics, Composition
Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
Eric Weisstein's World of Mathematics, Empty Graph
Eric Weisstein's World of Mathematics, Erf
Eric Weisstein's World of Mathematics, Fractional Part
Eric Weisstein's World of Mathematics, Halved Cube Graph
Eric Weisstein's World of Mathematics, Hypercube
Eric Weisstein's World of Mathematics, Independent Vertex Set
Eric Weisstein's World of Mathematics, Least Deficient Number
Eric Weisstein's World of Mathematics, Maximum Clique
Eric Weisstein's World of Mathematics, PowerFractional Parts
Eric Weisstein's World of Mathematics, Subset
Eric Weisstein's World of Mathematics, Vertex Cover
FORMULA
a(n) = 2^n.
a(0) = 1; a(n) = 2*a(n-1).
G.f.: 1/(1 - 2*x).
E.g.f.: exp(2*x).
a(n)= Sum_{k = 0..n} binomial(n, k).
a(n) is the number of occurrences of n in A000523. a(n) = A001045(n) + A001045(n+1). a(n) = 1 + Sum_{k = 0..(n - 1)} a(k). The Hankel transform of this sequence gives A000007 = [1, 0, 0, 0, 0, 0, ...]. - Philippe Deléham, Feb 25 2004
n such that phi(n) = n/2, for n > 1, where phi is Euler's totient (A000010). - Lekraj Beedassy, Sep 07 2004
a(n + 1) = a(n) XOR 3*a(n) where XOR is the binary exclusive OR operator. - Philippe Deléham, Jun 19 2005
a(n) = StirlingS2(n + 1, 2) + 1. - Ross La Haye, Jan 09 2008
a(n+2) = 6a(n+1) - 8a(n), n = 1, 2, 3, ... with a(1) = 1, a(2) = 2. - Yosu Yurramendi, Aug 06 2008
a(n) = ka(n-1) + (4 - 2k)a(n-2) for any integer k and n > 1, with a(0) = 1, a(1) = 2. - Jaume Oliver Lafont, Dec 05 2008
a(n) = Sum_{l_1 = 0..n + 1} Sum_{l_2 = 0..n}...Sum_{l_i = 0..n - i}...Sum_{l_n = 0..1} delta(l_1, l_2, ..., l_i, ..., l_n) where delta(l_1, l_2, ..., l_i, ..., l_n) = 0 if any l_i <= l_(i+1) and l_(i+1) != 0 and delta(l_1, l_2, ..., l_i, ..., l_n) = 1 otherwise. - Thomas Wieder, Feb 25 2009
a(0) = 1, a(1) = 2; a(n) = a(n-1)^2/a(n-2), n >= 2. - Jaume Oliver Lafont, Sep 22 2009
a(n) = A173786(n, n)/2 = A173787(n + 1, n). - Reinhard Zumkeller, Feb 28 2010
If p[i] = i - 1 and if A is the Hessenberg matrix of order n defined by: A[i, j] = p[j - i + 1], (i <= j), A[i, j] = -1, (i = j + 1), and A[i, j] = 0 otherwise. Then, for n >= 1, a(n-1) = det A. - Milan Janjic, May 02 2010
If p[i] = Fibonacci(i-2) and if A is the Hessenberg matrix of order n defined by: A[i, j] = p[j - i + 1], (i <= j), A[i, j] = -1, (i = j + 1), and A[i, j] = 0 otherwise. Then, for n >= 2, a(n-2) = det A. - Milan Janjic, May 08 2010
The sum of reciprocals, 1/1 + 1/2 + 1/4 + 1/8 + ... + 1/(2^n) + ... = 2. - Mohammad K. Azarian, Dec 29 2010
a(n) = 2*A001045(n) + A078008(n) = 3*A001045(n) + (-1)^n. - Paul Barry, Feb 20 2003
a(n) = A118654(n, 2).
a(n) = A140740(n+1, 1).
a(n) = A131577(n) + A011782(n) = A024495(n) + A131708(n) + A024493(n) = A000749(n) + A038503(n) + A038504(n) + A038505(n) = A139761(n) + A139748(n) + A139714(n) + A133476(n) + A139398(n). - Paul Curtz, Jul 25 2011
a(n) = row sums of A007318. - Susanne Wienand, Oct 21 2011
a(n) = Hypergeometric([-n], [], -1). - Peter Luschny, Nov 01 2011
G.f.: A(x) = B(x)/x, B(x) satisfies B(B(x)) = x/(1 - x)^2. - Vladimir Kruchinin, Nov 10 2011
a(n) = Sum_{k = 0..n} A201730(n, k)*(-1)^k. - Philippe Deléham, Dec 06 2011
2^n = Sum_{k = 1..floor((n+1)/2)} C(n+1, 2k-1). - Dennis P. Walsh, Dec 15 2011
A209229(a(n)) = 1. - Reinhard Zumkeller, Mar 07 2012
A001227(a(n)) = 1. - Reinhard Zumkeller, May 01 2012
Sum_{n >= 1} mobius(n)/a(n) = 0.1020113348178103647430363939318... - R. J. Mathar, Aug 12 2012
E.g.f.: 1 + 2*x/(U(0) - x) where U(k) = 6*k + 1 + x^2/(6*k+3 + x^2/(6*k + 5 + x^2/U(k+1) )); (continued fraction, 3-step). - Sergei N. Gladkovskii, Dec 04 2012
a(n) = det(|s(i+2,j)|, 1 <= i,j <= n), where s(n,k) are Stirling numbers of the first kind. - Mircea Merca, Apr 04 2013
a(n) = det(|ps(i+1,j)|, 1 <= i,j <= n), where ps(n,k) are Legendre-Stirling numbers of the first kind (A129467). - Mircea Merca, Apr 06 2013
G.f.: W(0), where W(k) = 1 + 2*x*(k+1)/(1 - 2*x*(k+1)/( 2*x*(k+2) + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 28 2013
a(n-1) = Sum_{t_1 + 2*t_2 + ... + n*t_n = n} multinomial(t_1 + t_2 + ... + t_n; t_1, t_2, ..., t_n). - Mircea Merca, Dec 06 2013
Construct the power matrix T(n,j) = [A^*j]*[S^*(j-1)] where A(n)=(1,1,1,...) and S(n)=(0,1,0,0,...) (where * is convolution operation). Then a(n-1) = Sum_{j=1..n} T(n,j). - David Neil McGrath, Jan 01 2015
a(n) = A000005(A002110(n)). - Ivan N. Ianakiev, May 23 2016
From Ilya Gutkovskiy, Jul 18 2016: (Start)
Exponential convolution of A000012 with themselves.
a(n) = Sum_{k=0..n} A011782(k).
Sum_{n>=0} a(n)/n! = exp(2) = A072334.
Sum_{n>=0} (-1)^n*a(n)/n! = exp(-2) = A092553. (End)
G.f.: (r(x) * r(x^2) * r(x^4) * r(x^8) * ...) where r(x) = A090129(x) = (1 + 2x + 2x^2 + 4x^3 + 8x^4 + ...). - Gary W. Adamson, Sep 13 2016
a(n) = A000045(n + 1) + A000045(n) + Sum_{k = 0..n - 2} A000045(k + 1)*2^(n - 2 - k). - Melvin Peralta, Dec 22 2017
a(n) = 7*A077020(n)^2 + A077021(n)^2, n>=3. - Ralf Steiner, Aug 08 2021
a(n)= n + 1 + Sum_{k=3..n+1} (2*k-5)*J(n+2-k), where Jacobsthal number J(n) = A001045(n). - Michael A. Allen, Jan 12 2022
Integral_{x=0..Pi} cos(x)^n*cos(n*x) dx = Pi/a(n) (see Nahin, pp. 69-70). - Stefano Spezia, May 17 2023
EXAMPLE
There are 2^3 = 8 subsets of a 3-element set {1,2,3}, namely { -, 1, 2, 3, 12, 13, 23, 123 }.
MAPLE
A000079 := n->2^n; [ seq(2^n, n=0..50) ];
isA000079 := proc(n)
local fs;
fs := numtheory[factorset](n) ;
if n = 1 then
true ;
elif nops(fs) <> 1 then
false;
elif op(1, fs) = 2 then
true;
else
false ;
end if;
end proc: # R. J. Mathar, Jan 09 2017
MATHEMATICA
Table[2^n, {n, 0, 50}]
2^Range[0, 50] (* Wesley Ivan Hurt, Jun 14 2014 *)
LinearRecurrence[{2}, {2}, {0, 20}] (* Eric W. Weisstein, Sep 21 2017 *)
CoefficientList[Series[1/(1 - 2 x), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 21 2017 *)
NestList[2# &, 1, 40] (* Harvey P. Dale, Oct 07 2019 *)
PROG
(PARI) A000079(n)=2^n \\ Edited by M. F. Hasler, Aug 27 2014
(PARI) unimodal(n)=local(x, d, um, umc); umc=0; for (c=0, n!-1, x=numtoperm(n, c); d=0; um=1; for (j=2, n, if (x[j]<x[j-1], d=1); if (x[j]>x[j-1] && d==1, um=0); if (um==0, break)); if (um==1, print(x)); umc+=um); umc
(Haskell)
a000079 = (2 ^)
a000079_list = iterate (* 2) 1
-- Reinhard Zumkeller, Jan 22 2014, Mar 05 2012, Dec 29 2011
(Maxima) A000079(n):=2^n$ makelist(A000079(n), n, 0, 30); /* Martin Ettl, Nov 05 2012 */
(Magma) [2^n: n in [0..40]]; // Vincenzo Librandi, Feb 17 2014
(Magma) [n le 2 select n else 5*Self(n-1)-6*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Feb 17 2014
(Scheme) (define (A000079 n) (expt 2 n)) ;; Antti Karttunen, Mar 21 2017
(Scala) (List.fill(20)(2: BigInt)).scanLeft(1: BigInt)(_ * _) // Alonso del Arte, Jan 16 2020
(Python)
def a(n): return 1<<n
print([a(n) for n in range(34)]) # Michael S. Branicky, Jul 28 2022
CROSSREFS
This is the Hankel transform (see A001906 for the definition) of A000984, A002426, A026375, A026387, A026569, A026585, A026671 and A032351. - John W. Layman, Jul 31 2000
Euler transform of A001037, A209406 (multisets), inverse binomial transform of A000244, binomial transform of A000012.
Complement of A057716.
Boustrophedon transforms: A000734, A000752.
Range of values of A006519, A007875, A011782, A030001, A034444, A037445, A053644, and A054243.
Cf. A018900, A014311, A014312, A014313, A023688, A023689, A023690, A023691 (sum of 2, ..., 9 distinct powers of 2).
Cf. A090129.
The following are parallel families: A000079 (2^n), A004094 (2^n reversed), A028909 (2^n sorted up), A028910 (2^n sorted down), A036447 (double and reverse), A057615 (double and sort up), A263451 (double and sort down); A000244 (3^n), A004167 (3^n reversed), A321540 (3^n sorted up), A321539 (3^n sorted down), A163632 (triple and reverse), A321542 (triple and sort up), A321541 (triple and sort down).
KEYWORD
nonn,core,easy,nice
EXTENSIONS
Clarified a comment T. D. Noe, Aug 30 2009
Edited by Daniel Forgues, May 12 2010
Incorrect comment deleted by Matthew Vandermast, May 17 2014
Comment corrected to match offset by Geoffrey Critzer, Nov 28 2014
STATUS
approved
Mersenne primes (primes of the form 2^n - 1).
(Formerly M2696 N1080)
+10
635
3, 7, 31, 127, 8191, 131071, 524287, 2147483647, 2305843009213693951, 618970019642690137449562111, 162259276829213363391578010288127, 170141183460469231731687303715884105727
OFFSET
1,1
COMMENTS
For a Mersenne number 2^n - 1 to be prime, the exponent n must itself be prime.
See A000043 for the values of n.
Primes that are repunits in base 2.
Define f(k) = 2k+1; begin with k = 2, a(n+1) = least prime of the form f(f(f(...(a(n))))). - Amarnath Murthy, Dec 26 2003
Mersenne primes other than the first are of the form 6n+1. - Lekraj Beedassy, Aug 27 2004. Mersenne primes other than the first are of the form 24n+7; see also A124477. - Artur Jasinski, Nov 25 2007
A034876(a(n)) = 0 and A034876(a(n)+1) = 1. - Jonathan Sondow, Dec 19 2004
Mersenne primes are solutions to sigma(n+1)-sigma(n) = n as perfect numbers (A000396(n)) are solutions to sigma(n) = 2n. In fact, appears to give all n such that sigma(n+1)-sigma(n) = n. - Benoit Cloitre, Aug 27 2002
If n is in the sequence then sigma(sigma(n)) = 2n+1. Is it true that this sequence gives all numbers n such that sigma(sigma(n)) = 2n+1? - Farideh Firoozbakht, Aug 19 2005
It is easily proved that if n is a Mersenne prime then sigma(sigma(n)) - sigma(n) = n. Is it true that Mersenne primes are all the solutions of the equation sigma(sigma(x)) - sigma(x) = x? - Farideh Firoozbakht, Feb 12 2008
Sum of divisors of n-th even superperfect number A061652(n). Sum of divisors of n-th superperfect number A019279(n), if there are no odd superperfect numbers. - Omar E. Pol, Mar 11 2008
Indices of both triangular numbers and generalized hexagonal numbers (A000217) that are also even perfect numbers. - Omar E. Pol, May 10 2008, Sep 22 2013
Number of positive integers (1, 2, 3, ...) whose sum is the n-th perfect number A000396(n). - Omar E. Pol, May 10 2008
Vertex number where the n-th perfect number A000396(n) is located in the square spiral whose vertices are the positive triangular numbers A000217. - Omar E. Pol, May 10 2008
Mersenne numbers A000225 whose indices are the prime numbers A000043. - Omar E. Pol, Aug 31 2008
The digital roots are 1 if p == 1 (mod 6) and 4 if p == 5 (mod 6). [T. Koshy, Math Gaz. 89 (2005) p. 465]
Primes p such that for all primes q < p, p XOR q = p - q. - Brad Clardy, Oct 26 2011
All these primes, except 3, are Brazilian primes, so they are also in A085104 and A023195. - Bernard Schott, Dec 26 2012
All prime numbers p can be classified by k = (p mod 12) into four classes: k=1, 5, 7, 11. The Mersennne prime numbers 2^p-1, p > 2 are in the class k=7 with p=12*(n-1)+7, n=1,2,.... As all 2^p (p odd) are in class k=8 it follows that all 2^p-1, p > 2 are in class k=7. - Freimut Marschner, Jul 27 2013
From "The Guinness Book of Primes": "During the reign of Queen Elizabeth I, the largest known prime number was the number of grains of rice on the chessboard up to and including the nineteenth square: 524,287 [= 2^19 - 1]. By the time Lord Nelson was fighting the Battle of Trafalgar, the record for the largest prime had gone up to the thirty-first square of the chessboard: 2,147,483,647 [= 2^31 - 1]. This ten-digits number was proved to be prime in 1772 by the Swiss mathematician Leonard Euler, and it held the record until 1867." [du Sautoy] - Robert G. Wilson v, Nov 26 2013
If n is in the sequence then A024816(n) = antisigma(n) = antisigma(n+1) - 1. Is it true that this sequence gives all numbers n such that antisigma(n) = antisigma(n+1) - 1? Are there composite numbers with this property? - Jaroslav Krizek, Jan 24 2014
If n is in the sequence then phi(n) + sigma(sigma(n)) = 3n. Is it true that Mersenne primes are all the solutions of the equation phi(x) + sigma(sigma(x)) = 3x? - Farideh Firoozbakht, Sep 03 2014
a(5) = A229381(2) = 8191 is the "Simpsons' Mersenne prime". - Jonathan Sondow, Jan 02 2015
Equivalently, prime powers of the form 2^n - 1, see Theorem 2 in Lemos & Cambraia Junior. - Charles R Greathouse IV, Jul 07 2016
Primes whose sum of divisors is a power of 2. Primes p such that p + 1 is a power of 2. Primes in A046528. - Omar E. Pol, Jul 09 2016
From Jaroslav Krizek, Jan 19 2017: (Start)
Primes p such that sigma(p+1) = 2p+1.
Primes p such that A051027(p) = sigma(sigma(p)) = 2^k-1 for some k > 1.
Primes p of the form sigma(2^prime(n)-1)-1 for some n. Corresponding values of numbers n are in A016027.
Primes p of the form sigma(2^(n-1)) for some n > 1. Corresponding values of numbers n are in A000043 (Mersenne exponents).
Primes of the form sigma(2^(n+1)) for some n > 1. Corresponding values of numbers n are in A153798 (Mersenne exponents-2).
Primes p of the form sigma(n) where n is even; subsequence of A023195. Primes p of the form sigma(n) for some n. Conjecture: 31 is the only prime p such that p = sigma(x) = sigma(y) for distinct numbers x and y; 31 = sigma(16) = sigma(25).
Conjecture: numbers n such that n = sigma(sigma(n+1)-n-1)-1, i.e., A072868(n)-1.
Conjecture: primes of the form sigma(4*(n-1)) for some n. Corresponding values of numbers n are in A281312. (End)
[Conjecture] For n > 2, the Mersenne number M(n) = 2^n - 1 is a prime if and only if 3^M(n-1) == -1 (mod M(n)). - Thomas Ordowski, Aug 12 2018 [This needs proof! - Joerg Arndt, Mar 31 2019]
Named "Mersenne's numbers" by W. W. Rouse Ball (1892, 1912) after Marin Mersenne (1588-1648). - Amiram Eldar, Feb 20 2021
Theorem. Let b = 2^p - 1 (where p is a prime). Then b is a Mersenne prime iff (c = 2^p - 2 is totient or a term of A002202). Otherwise, if c is (nontotient or a term of A005277) then b is composite. Proof. Trivial, since, while b = v^g - 1 where v is even, v > 2, g is an integer, g > 1, b is always composite, and c = v^g - 2 is nontotient (or a term of A005277), and so is for any composite b = 2^g - 1 (in the last case, c = v^g - 2 is also nontotient, or a term of A005277). - Sergey Pavlov, Aug 30 2021 [Disclaimer: This proof has not been checked. - N. J. A. Sloane, Oct 01 2021]
REFERENCES
Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 4.
John Brillhart, D. H. Lehmer, J. L. Selfridge, Bryant Tuckerman and S. S. Wagstaff, Jr., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
Graham Everest, Alf van der Poorten, Igor Shparlinski and Thomas Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
Marcus P. F. du Sautoy, The Number Mysteries, A Mathematical Odyssey Through Everyday Life, Palgrave Macmillan, First published in 2010 by the Fourth Estate, an imprint of Harper Collins UK, 2011, p. 46. - Robert G. Wilson v, Nov 26 2013
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Bryant Tuckerman, The 24th Mersenne prime, Notices Amer. Math. Soc., 18 (Jun, 1971), Abstract 684-A15, p. 608.
LINKS
Peter Alfeld, The 39th Mersenne prime, 2003.
Yan Bingze, Li Qiong, Mao Haokun, and Chen Nan, An efficient hybrid hash based privacy amplification algorithm for quantum key distribution, arXiv:2105.13678 [quant-ph], 2021.
Andrew R. Booker, The Nth Prime Page
W. W. Rouse Ball, Mathematical recreations and problems of past and present times, London, Macmillan and Co., 1892, pp. 24-25.
W. W. Rouse Ball, Mersenne's numbers, Messenger of Mathematics, Vol. 21 (1892), pp. 34-40, 121.
W. W. Rouse Ball, Mersenne's numbers, Nature, Vol. 89 (1912), p. 86.
John Brillhart, D. H. Lehmer, J. L. Selfridge, Bryant Tuckerman and S. S. Wagstaff, Jr., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
Kevin A. Broughan and Qizhi Zhou, On the Ratio of the Sum of Divisors and Euler's Totient Function II, Journal of Integer Sequences, Vol. 17 (2014), Article 14.9.2.
Douglas Butler, Mersenne Primes.
C. K. Caldwell, Mersenne primes.
C. K. Caldwell, "Top Twenty" page, Mersenne Primes.
Luis H. Gallardo and Olivier Rahavandrainy, On (unitary) perfect polynomials over F_2 with only Mersenne primes as odd divisors, arXiv:1908.00106 [math.NT], 2019.
Richard K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]
Sameen Ahmed Khan, Primes in Geometric-Arithmetic Progression, arXiv preprint arXiv:1203.2083 [math.NT], 2012. - From N. J. A. Sloane, Sep 15 2012
Abílio Lemos and Ady Cambraia Junior, On the number of prime factors of Mersenne numbers, arXiv:1606.08690 [math.NT] (2016).
Benny Lim, Prime Numbers Generated From Highly Composite Numbers, Parabola (2018) Vol. 54, Issue 3.
Math Reference Project, Mersenne and Fermat Primes.
Romeo Meštrović, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv preprint arXiv:1202.3670 [math.HO], 2012. - From N. J. A. Sloane, Jun 13 2012
Romeo Meštrović, Goldbach-type conjectures arising from some arithmetic progressions, University of Montenegro, 2018.
Passawan Noppakaew and Prapanpong Pongsriiam, Product of Some Polynomials and Arithmetic Functions, J. Int. Seq. (2023) Vol. 26, Art. 23.9.1.
Christian Salas, Cantor Primes as Prime-Valued Cyclotomic Polynomials, arXiv preprint arXiv:1203.3969 [math.NT], 2012.
Harry J. Smith, Mersenne Primes, 1981-2010.
Gordon Spence, 36th Mersenne Prime Found, 1999.
Susan Stepney, Mersenne Prime.
Thesaurus.maths.org, Mersenne Prime.
Bryant Tuckerman, The 24th Mersenne prime, Proc. Nat. Acad. Sci. USA, Vol. 68 (1971), pp. 2319-2320.
Samuel S. Wagstaff, Jr., The Cunningham Project.
Yunlan Wei, Yanpeng Zheng, Zhaolin Jiang and Sugoog Shon, A Study of Determinants and Inverses for Periodic Tridiagonal Toeplitz Matrices with Perturbed Corners Involving Mersenne Numbers, Mathematics, Vol. 7, No. 10 (2019), 893.
Eric Weisstein's World of Mathematics, Mersenne Prime.
Eric Weisstein's World of Mathematics, Perfect Number.
Wikipedia, Mersenne prime.
Marek Wolf, Computer experiments with Mersenne primes, arXiv preprint arXiv:1112.2412 [math.NT], 2011.
FORMULA
a(n) = sigma(A061652(n)) = A000203(A061652(n)). - Omar E. Pol, Apr 15 2008
a(n) = sigma(A019279(n)) = A000203(A019279(n)), provided that there are no odd superperfect numbers. - Omar E. Pol, May 10 2008
a(n) = A000225(A000043(n)). - Omar E. Pol, Aug 31 2008
a(n) = 2^A000043(n) - 1 = 2^(A000005(A061652(n))) - 1. - Omar E. Pol, Oct 27 2011
a(n) = A000040(A059305(n)) = A001348(A016027(n)). - Omar E. Pol, Jun 29 2012
a(n) = A007947(A000396(n))/2, provided that there are no odd perfect numbers. - Omar E. Pol, Feb 01 2013
a(n) = 4*A134709(n) + 3. - Ivan N. Ianakiev, Sep 07 2013
a(n) = A003056(A000396(n)), provided that there are no odd perfect numbers. - Omar E. Pol, Dec 19 2016
Sum_{n>=1} 1/a(n) = A173898. - Amiram Eldar, Feb 20 2021
MAPLE
A000668 := proc(n) local i;
i := 2^(ithprime(n))-1:
if (isprime(i)) then
return i
fi: end:
seq(A000668(n), n=1..31); # Jani Melik, Feb 09 2011
# Alternate:
seq(numtheory:-mersenne([i]), i=1..26); # Robert Israel, Jul 13 2014
MATHEMATICA
2^Array[MersennePrimeExponent, 18] - 1 (* Jean-François Alcover, Feb 17 2018, Mersenne primes with less than 1000 digits *)
2^MersennePrimeExponent[Range[18]] - 1 (* Eric W. Weisstein, Sep 04 2021 *)
PROG
(PARI) forprime(p=2, 1e5, if(ispseudoprime(2^p-1), print1(2^p-1", "))) \\ Charles R Greathouse IV, Jul 15 2011
(PARI) LL(e) = my(n, h); n = 2^e-1; h = Mod(2, n); for (k=1, e-2, h=2*h*h-1); return(0==h) \\ after Joerg Arndt in A000043
forprime(p=1, , if(LL(p), print1(p, ", "))) \\ Felix Fröhlich, Feb 17 2018
(GAP)
A000668:=Filtered(List(Filtered([1..600], IsPrime), i->2^i-1), IsPrime); # Muniru A Asiru, Oct 01 2017
(Python)
from sympy import isprime, primerange
print([2**n-1 for n in primerange(1, 1001) if isprime(2**n-1)]) # Karl V. Keller, Jr., Jul 16 2020
CROSSREFS
Cf. A000225 (Mersenne numbers).
Cf. A000043 (Mersenne exponents).
Cf. A001348 (Mersenne numbers with n prime).
KEYWORD
nonn,nice,hard,changed
STATUS
approved
Powers of 4: a(n) = 4^n.
(Formerly M3518 N1428)
+10
557
1, 4, 16, 64, 256, 1024, 4096, 16384, 65536, 262144, 1048576, 4194304, 16777216, 67108864, 268435456, 1073741824, 4294967296, 17179869184, 68719476736, 274877906944, 1099511627776, 4398046511104, 17592186044416, 70368744177664, 281474976710656
OFFSET
0,2
COMMENTS
Same as Pisot sequences E(1, 4), L(1, 4), P(1, 4), T(1, 4). Essentially same as Pisot sequences E(4, 16), L(4, 16), P(4, 16), T(4, 16). See A008776 for definitions of Pisot sequences.
The convolution square root of this sequence is A000984, the central binomial coefficients: C(2n,n). - T. D. Noe, Jun 11 2002
With P(n) being the number of integer partitions of n, p(i) as the number of parts of the i-th partition of n, d(i) as the number of different parts of the i-th partition of n, m(i, j) the multiplicity of the j-th part of the i-th partition of n, one has a(n) = Sum_{i = 1..P(n)} p(i)!/(Product_{j = 1..d(i)} m(i, j)!) * 2^(n-1). - Thomas Wieder, May 18 2005
Sums of rows of the triangle in A122366. - Reinhard Zumkeller, Aug 30 2006
Hankel transform of A076035. - Philippe Deléham, Feb 28 2009
Equals the Catalan sequence: (1, 1, 2, 5, 14, ...), convolved with A032443: (1, 3, 11, 42, ...). - Gary W. Adamson, May 15 2009
Sum of coefficients of expansion of (1 + x + x^2 + x^3)^n.
a(n) is number of compositions of natural numbers into n parts less than 4. For example, a(2) = 16 since there are 16 compositions of natural numbers into 2 parts less than 4.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 4-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
Squares in A002984. - Reinhard Zumkeller, Dec 28 2011
Row sums of Pascal's triangle using the rule that going left increases the value by a factor of k = 3. For example, the first three rows are {1}, {3, 1}, and {9, 6, 1}. Using this rule gives row sums as (k+1)^n. - Jon Perry, Oct 11 2012
First differences of A002450. - Omar E. Pol, Feb 20 2013
Sum of all peak heights in Dyck paths of semilength n+1. - David Scambler, Apr 22 2013
Powers of 4 exceed powers of 2 by A020522 which is the m-th oblong number A002378(m), m being the n-th Mersenne number A000225(n); hence, we may write, a(n) = A000079(n) + A002378(A000225(n)). - Lekraj Beedassy, Jan 17 2014
a(n) is equal to 1 plus the sum for 0 < k < 2^n of the numerators and denominators of the reduced fractions k/2^n. - J. M. Bergot, Jul 13 2015
Binomial transform of A000244. - Tony Foster III, Oct 01 2016
From Ilya Gutkovskiy, Oct 01 2016: (Start)
Number of nodes at level n regular 4-ary tree.
Partial sums of A002001. (End)
Satisfies Benford's law [Berger-Hill, 2011]. - N. J. A. Sloane, Feb 08 2017
Also the number of connected dominating sets in the (n+1)-barbell graph. - Eric W. Weisstein, Jun 29 2017
Side length of the cells at level n in a pyramid scheme where a square grid is decomposed into overlapping 2 X 2 blocks (cf. Kropatsch, 1985). - Felix Fröhlich, Jul 04 2019
a(n-1) is the number of 3-compositions of n; see Hopkins & Ouvry reference. - Brian Hopkins, Aug 15 2020
REFERENCES
H. W. Gould, Combinatorial Identities, 1972, eq. (1.93), p. 12.
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd. ed., 1994, eq. (5.39), p. 187.
D. Phulara and L. W. Shapiro, Descendants in ordered trees with a marked vertex, Congressus Numerantium, 205 (2011), 121-128.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
LINKS
Arno Berger and Theodore P. Hill, Benford's law strikes back: no simple explanation in sight for mathematical gem, The Mathematical Intelligencer 33.1 (2011): 85-91.
Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão, and Graça Tomaz, Combinatorial Identities Associated with a Multidimensional Polynomial Sequence, J. Int. Seq., Vol. 21 (2018), Article 18.7.4.
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
G. Dresden and Y. Li, Periodic Weighted Sums of Binomial Coefficients, arXiv:2210.04322 [math.NT], 2022.
R. Duarte and A. G. de Oliveira, Short note on the convolution of binomial coefficients, arXiv preprint arXiv:1302.2100 [math.CO], 2013 and J. Int. Seq. 16 (2013) #13.7.6.
Roudy El Haddad, Recurrent Sums and Partition Identities, arXiv:2101.09089 [math.NT], 2021.
Roudy El Haddad, A generalization of multiple zeta value. Part 1: Recurrent sums. Notes on Number Theory and Discrete Mathematics, 28(2), 2022, 167-199, DOI: 10.7546/nntdm.2022.28.2.167-199.
Madeleine Goertz and Aaron Williams, The Quaternary Gray Code and How It Can Be Used to Solve Ziggurat and Other Ziggu Puzzles, arXiv:2411.19291 [math.CO], 2024. See p. 5.
Brian Hopkins and Stéphane Ouvry, Combinatorics of Multicompositions, arXiv:2008.04937 [math.CO], 2020.
Milan Janjić, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2.
Tanya Khovanova, Recursive Sequences
Walter G. Kropatsch, A pyramid that grows by powers of 2, Pattern Recognition Letters, Vol. 3, No. 5 (1985), 315-322 [Subscription required].
Mircea Merca, A Note on Cosine Power Sums J. Integer Sequences, Vol. 15 (2012), Article 12.5.3.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
Robert Schneider, Partition zeta functions, Research in Number Theory, 2(1):9., 2016.
Paul K. Stockmeyer, The Pascal Rhombus and the Stealth Configuration, arXiv preprint arXiv:1504.04404 [math.CO], 2015.
Eric Weisstein's World of Mathematics, Barbell Graph
Eric Weisstein's World of Mathematics, Cantor Dust
Eric Weisstein's World of Mathematics, Connected Dominating Set
Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
FORMULA
a(n) = 4^n.
a(0) = 1; a(n) = 4*a(n-1).
G.f.: 1/(1-4*x).
E.g.f.: exp(4*x).
a(n) = Sum_{k = 0..n} binomial(2k, k) * binomial(2(n - k), n - k). - Benoit Cloitre, Jan 26 2003 [See Graham et al., eq. (5.39), p. 187. - Wolfdieter Lang, Aug 16 2019]
1 = Sum_{n >= 1} 3/a(n) = 3/4 + 3/16 + 3/64 + 3/256 + 3/1024, ...; with partial sums: 3/4, 15/16, 63/64, 255/256, 1023/1024, ... - Gary W. Adamson, Jun 16 2003
a(n) = A001045(2*n) + A001045(2*n+1). - Paul Barry, Apr 27 2004
A000005(a(n)) = A005408(n+1). - Reinhard Zumkeller, Mar 04 2007
a(n) = Sum_{j = 0..n} 2^(n - j)*binomial(n + j, j). - Peter C. Heinig (algorithms(AT)gmx.de), Apr 06 2007
Hankel transform of A115967. - Philippe Deléham, Jun 22 2007
a(n) = 6*Stirling2(n+1, 4) + 6*Stirling2(n+1, 3) + 3*Stirling2(n+1, 2) + 1 = 2*Stirling2(2^n, 2^n - 1) + Stirling2(n+1, 2) + 1. - Ross La Haye, Jun 26 2008
a(n) = A159991(n)/A001024(n) = A047653(n) + A181765(n). A160700(a(n)) = A010685(n). - Reinhard Zumkeller, May 02 2009
a(n) = A188915(A006127(n)). - Reinhard Zumkeller, Apr 14 2011
a(n) = Sum_{k = 0..n} binomial(2*n+1, k). - Mircea Merca, Jun 25 2011
Sum_{n >= 1} Mobius(n)/a(n) = 0.1710822479183... - R. J. Mathar, Aug 12 2012
a(n) = Sum_{k = 0..n} binomial(2*k + x, k)*binomial(2*(n - k) - x, n - k) for every real number x. - Rui Duarte and António Guedes de Oliveira, Feb 16 2013
a(n) = 5*a(n - 1) - 4*a(n - 2). - Jean-Bernard François, Sep 12 2013
a(n) = (2*n+1) * binomial(2*n,n) * Sum_{j=0..n} (-1)^j/(2*j+1)*binomial(n,j). - Vaclav Kotesovec, Sep 15 2013
a(n) = A000217(2^n - 1) + A000217(2^n). - J. M. Bergot, Dec 28 2014
a(n) = (2^n)^2 = A000079(n)^2. - Doug Bell, Jun 23 2015
a(n) = A002063(n)/3 - A004171(n). - Zhandos Mambetaliyev, Nov 19 2016
a(n) = (1/2) * Product_{k = 0..n} (1 + (2*n + 1)/(2*k + 1)). - Peter Bala, Mar 06 2018
a(n) = A001045(n+1)*A001045(n+2) + A001045(n)^2. - Ezhilarasu Velayutham, Aug 30 2019
a(n) = denominator(zeta_star({2}_(n + 1))/zeta(2*n + 2)) where zeta_star is the multiple zeta star values and ({2}_n) represents (2, ..., 2) where the multiplicity of 2 is n. - Roudy El Haddad, Feb 22 2022
a(n) = 1 + 3*Sum_{k=0..n} binomial(2*n, n+k)*(k|9), where (k|9) is the Jacobi symbol. - Greg Dresden, Oct 11 2022
a(n) = Sum_{k = 0..n} binomial(2*n+1, 2*k) = Sum_{k = 0..n} binomial(2*n+1, 2*k+1). - Sela Fried, Mar 23 2023
MAPLE
A000302 := n->4^n;
for n from 0 to 10 do sum(2^(n-j)*binomial(n+j, j), j=0..n); od; # Peter C. Heinig (algorithms(AT)gmx.de), Apr 06 2007
A000302:=-1/(-1+4*z); # Simon Plouffe in his 1992 dissertation.
MATHEMATICA
Table[4^n, {n, 0, 30}] (* Stefan Steinerberger, Apr 01 2006 *)
CoefficientList[Series[1/(1 - 4 x), {x, 0, 50}], x] (* Vincenzo Librandi, May 29 2014 *)
NestList[4 # &, 1, 30] (* Harvey P. Dale, Mar 26 2015 *)
4^Range[0, 30] (* Eric W. Weisstein, Jun 29 2017 *)
LinearRecurrence[{4}, {1}, 31] (* Robert A. Russell, Nov 08 2018 *)
PROG
(PARI) A000302(n)=4^n \\ Michael B. Porter, Nov 06 2009
(Haskell)
a000302 = (4 ^)
a000302_list = iterate (* 4) 1 -- Reinhard Zumkeller, Apr 04 2012
(Maxima) A000302(n):=4^n$ makelist(A000302(n), n, 0, 30); /* Martin Ettl, Oct 24 2012 */
(Scala) (List.fill(20)(4: BigInt)).scanLeft(1: BigInt)(_ * _) // Alonso del Arte, Jun 22 2019
(Python) print([4**n for n in range(25)]) # Michael S. Branicky, Jan 04 2021
(Python) is_A000302 = lambda n: n.bit_count()==1 and n.bit_length()&1 # M. F. Hasler, Nov 25 2024
CROSSREFS
Cf. A024036, A052539, A032443, A000351 (Binomial transform).
Cf. A249307.
Cf. A083420.
KEYWORD
easy,nonn,nice,core
EXTENSIONS
Partially edited by Joerg Arndt, Mar 11 2010
STATUS
approved
Odious numbers: numbers with an odd number of 1's in their binary expansion.
(Formerly M1031 N0388)
+10
308
1, 2, 4, 7, 8, 11, 13, 14, 16, 19, 21, 22, 25, 26, 28, 31, 32, 35, 37, 38, 41, 42, 44, 47, 49, 50, 52, 55, 56, 59, 61, 62, 64, 67, 69, 70, 73, 74, 76, 79, 81, 82, 84, 87, 88, 91, 93, 94, 97, 98, 100, 103, 104, 107, 109, 110, 112, 115, 117, 118, 121, 122, 124, 127, 128
OFFSET
1,2
COMMENTS
This sequence and A001969 give the unique solution to the problem of splitting the nonnegative integers into two classes in such a way that sums of pairs of distinct elements from either class occur with the same multiplicities [Lambek and Moser]. Cf. A000028, A000379.
In French: les nombres impies.
Has asymptotic density 1/2, since exactly 2 of the 4 numbers 4k, 4k+1, 4k+2, 4k+3 have an even sum of bits, while the other 2 have an odd sum. - Jeffrey Shallit, Jun 04 2002
Nim-values for game of mock turtles played with n coins.
A115384(n) = number of odious numbers <= n; A000120(a(n)) = A132680(n). - Reinhard Zumkeller, Aug 26 2007
Indices of 1's in the Thue-Morse sequence A010060. - Tanya Khovanova, Dec 29 2008
For any positive integer m, the partition of the set of the first 2^m positive integers into evil ones E and odious ones O is a fair division for any polynomial sequence p(k) of degree less than m, that is, Sum_{k in E} p(k) = Sum_{k in O} p(k) holds for any polynomial p with deg(p) < m. - Pietro Majer, Mar 15 2009
For n>1 let b(n) = a(n-1). Then b(b(n)) = 2b(n). - Benoit Cloitre, Oct 07 2010
Lexicographically earliest sequence of distinct nonnegative integers with no term being the binary exclusive OR of any terms. The equivalent sequence for addition or for subtraction is A005408 (the odd numbers) and for multiplication is A026424. - Peter Munn, Jan 14 2018
Numbers of the form m XOR (2*m+1) for some m >= 0. - Rémy Sigrist, Apr 14 2022
REFERENCES
E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see p. 433.
J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 22.
Vladimir S. Shevelev, On some identities connected with the partition of the positive integers with respect to the Morse sequence, Izv. Vuzov of the North-Caucasus region, Nature sciences 4 (1997), 21-23 (in Russian).
N. J. A. Sloane, A handbook of Integer Sequences, Academic Press, 1973 (including this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J.-P. Allouche, The zeta-regularized product of odious numbers, arXiv:1906.10532 [math.NT], 2019.
J.-P. Allouche and J. Shallit, The ring of k-regular sequences, II, Theoret. Computer Sci., 307 (2003), 3-29.
J.-P. Allouche, J. Shallit and G. Skordev, Self-generating sets, integers with missing blocks and substitutions, Discrete Math. 292 (2005) 1-15.
J.-P. Allouche, B. Cloitre, and V. Shevelev, Beyond odious and evil, arXiv preprint arXiv:1405.6214 [math.NT], 2014.
J.-P. Allouche, B. Cloitre, and V. Shevelev, Beyond odious and evil, Aequationes mathematicae, March 2015, pp 1-13.
E. Fouvry and C. Mauduit, Sommes des chiffres et nombres presque premiers, (French) [Sums of digits and almost primes] Math. Ann. Vol. 305, No. 1 (1996), 571-599, DOI:10.1007/BF01444238, MR1397437 (97k:11029).
Aviezri S. Fraenkel, The vile, dopey, evil and odious game players, Discrete Mathematics, Volume 312, Issue 1, 6 January 2012, Pages 42-46.
Maciej Gawron, and Maciej Ulas, On formal inverse of the Prouhet-Thue-Morse sequence, Discrete Mathematics 339.5 (2016): 1459-1470. Also arXiv preprint, arXiv:1601.04840 [math.CO], 2016.
R. K. Guy, The unity of combinatorics, Proc. 25th Iranian Math. Conf, Tehran, (1994), Math. Appl 329 129-159, Kluwer Dordrecht 1995, Math. Rev. 96k:05001.
R. K. Guy, Impartial games, pp. 35-55 of Combinatorial Games, ed. R. K. Guy, Proc. Sympos. Appl. Math., 43, Amer. Math. Soc., 1991.
Sajed Haque, Chapter 3.2 of Discriminators of Integer Sequences, Thesis, 2017.
Sajed Haque and Jeffrey Shallit, Discriminators and k-Regular Sequences, arXiv:1605.00092 [cs.DM], 2016.
K. Jensen, Aesthetics and quality of numbers using the primety measure, Int. J. Arts and Technology, Vol. 7, Nos. 2/3, 2014.
Clark Kimberling, Affinely recursive sets and orderings of languages, Discrete Math., 274 (2004), 147-160. [From N. J. A. Sloane, Jan 31 2012]
Tanya Khovanova, There are no coincidences, arXiv:1410.2193 [math.CO], 2014.
J. Lambek and L. Moser, On some two way classifications of integers, Canad. Math. Bull. 2 (1959), 85-89.
M. D. McIlroy, The number of 1's in binary integers: bounds and extremal properties, SIAM J. Comput., 3 (1974), 255-261.
D. J. Newman, A Problem Seminar, Problem 15 pp. 5; 15 Springer-Verlag NY 1982.
Aayush Rajasekaran, Jeffrey Shallit and Tim Smith, Additive Number Theory via Automata Theory, Theory of Computing Systems (2019) 1-26.
Jeffrey Shallit, Additive Number Theory via Automata and Logic, arXiv:2112.13627 [math.NT], 2021.
Vladimir Shevelev and Peter J. C. Moses, Tangent power sums and their applications, arXiv:1207.0404 [math.NT], 2012-2014. - From N. J. A. Sloane, Dec 17 2012
Vladimir Shevelev and Peter J. C. Moses, Tangent power sums and their applications, INTEGERS, 14(2014) #64.
Vladimir Shevelev and Peter J. C. Moses, A family of digit functions with large periods, arXiv:1209.5705 [math.NT], 2012.
Andrzej Tomski and Maciej Zakarczemny, A note on Browkin's and Cao's cancellation algorithm, Technical Transections 7/2018.
Eric Weisstein's World of Mathematics, Odious Number
FORMULA
G.f.: 1 + Sum_{k>=0} (t*(2+2t+5t^2-t^4)/(1-t^2)^2) * Product_{j=0..k-1} (1-x^(2^j)), t=x^2^k. - Ralf Stephan, Mar 25 2004
a(n+1) = (1/2) * (4*n + 1 + (-1)^A000120(n)). - Ralf Stephan, Sep 14 2003
Numbers n such that A010060(n) = 1. - Benoit Cloitre, Nov 15 2003
a(2*n+1) + a(2*n) = A017101(n) = 8*n+3. a(2*n+1) - a(2*n) gives the Thue-Morse sequence (1, 3 version): 1, 3, 3, 1, 3, 1, 1, 3, 3, 1, 1, 3, 1, ... A001969(n) + A000069(n) = A016813(n) = 4*n+1. - Philippe Deléham, Feb 04 2004
(-1)^a(n) = 2*A010060(n)-1. - Benoit Cloitre, Mar 08 2004
a(1) = 1; for n > 1: a(2*n) = 6*n-3 -a(n), a(2*n+1) = a(n+1) + 2*n. - Corrected by Vladimir Shevelev, Sep 25 2011
For k >= 1 and for every real (or complex) x, we have Sum_{i=1..2^k} (a(i)+x)^s = Sum_{i=1..2^k} (A001969(i)+x)^s, s=0..k.
For x=0, s <= k-1, this is known as Prouhet theorem (see J.-P. Allouche and Jeffrey Shallit, The Ubiquitous Prouhet-Thue-Morse Sequence). - Vladimir Shevelev, Jan 16 2012
a(n+1) mod 2 = 1 - A010060(n) = A010059(n). - Robert G. Wilson v, Jan 18 2012
A005590(a(n)) > 0. - Reinhard Zumkeller, Apr 11 2012
A106400(a(n)) = -1. - Reinhard Zumkeller, Apr 29 2012
a(n+1) = A006068(n) XOR (2*A006068(n) + 1). - Rémy Sigrist, Apr 14 2022
EXAMPLE
For k=2, x=0 and x=0.2 we respectively have 1^2 + 2^2 + 4^2 + 7^2 = 0^2 + 3^2 + 5^2 + 6^2 = 70;
(1.2)^2 + (2.2)^2 + (4.2)^2 + (7.2)^2 = (0.2)^2 + (3.2)^2 + (5.2)^2 + (6.2)^2 = 75.76;
for k=3, x=1.8, we have (2.8)^3 + (3.8)^3 + (5.8)^3 + (8.8)^3 + (9.8)^3 + (12.8)^3 + (14.8)^3 + (15.8)^3 = (1.8)^3 + (4.8)^3 + (6.8)^3 + (7.8)^3 + (10.8)^3 + (11.8)^3 + (13.8)^3 + (16.8)^3 = 11177.856. - Vladimir Shevelev, Jan 16 2012
MAPLE
s := proc(n) local i, j, k, b, sum, ans; ans := [ ]; j := 0; for i while j<n do sum := 0; b := convert(i, base, 2); for k to nops(b) do sum := sum+b[ k ]; od; if sum mod 2 = 1 then ans := [ op(ans), i ]; j := j+1; fi; od; RETURN(ans); end; t1 := s(100); A000069 := n->t1[n]; # s(k) gives first k terms.
is_A000069 := n -> type(add(i, i=convert(n, base, 2)), odd):
seq(`if`(is_A000069(i), i, NULL), i=0..40); # Peter Luschny, Feb 03 2011
MATHEMATICA
Select[Range[300], OddQ[DigitCount[ #, 2][[1]]] &] (* Stefan Steinerberger, Mar 31 2006 *)
a[ n_] := If[ n < 1, 0, 2 n - 1 - Mod[ Total @ IntegerDigits[ n - 1, 2], 2]]; (* Michael Somos, Jun 01 2013 *)
PROG
(PARI) {a(n) = if( n<1, 0, 2*n - 1 - subst( Pol(binary( n-1)), x, 1) % 2)}; /* Michael Somos, Jun 01 2013 */
(PARI) {a(n) = if( n<2, n==1, if( n%2, a((n+1)/2) + n-1, -a(n/2) + 3*(n-1)))}; /* Michael Somos, Jun 01 2013 */
(PARI) a(n)=2*n-1-hammingweight(n-1)%2 \\ Charles R Greathouse IV, Mar 22 2013
(Magma) [ n: n in [1..130] | IsOdd(&+Intseq(n, 2)) ]; // Klaus Brockhaus, Oct 07 2010
(Haskell)
a000069 n = a000069_list !! (n-1)
a000069_list = [x | x <- [0..], odd $ a000120 x]
-- Reinhard Zumkeller, Feb 01 2012
(Python)
[n for n in range(1, 201) if bin(n)[2:].count("1") % 2] # Indranil Ghosh, May 03 2017
(Python)
def A000069(n): return ((m:=n-1)<<1)+(m.bit_count()&1^1) # Chai Wah Wu, Mar 03 2023
CROSSREFS
The basic sequences concerning the binary expansion of n are A000120, A000788, A000069, A001969, A023416, A059015.
Complement of A001969 (the evil numbers). Cf. A133009.
a(n) = 2*n + 1 - A010060(n) = A001969(n) + (-1)^A010060(n).
First differences give A007413.
Note that A000079, A083420, A002042, A002089, A132679 are subsequences.
See A027697 for primes, also A230095.
Cf. A005408 (odd numbers), A006068, A026424.
KEYWORD
easy,core,nonn,nice,base
STATUS
approved
a(n) = 4^n - 2^n.
+10
42
0, 2, 12, 56, 240, 992, 4032, 16256, 65280, 261632, 1047552, 4192256, 16773120, 67100672, 268419072, 1073709056, 4294901760, 17179738112, 68719214592, 274877382656, 1099510579200, 4398044413952, 17592181850112, 70368735789056, 281474959933440
OFFSET
0,2
COMMENTS
Number of walks of length 2*n+2 between any two diametrically opposite vertices of the cycle graph C_8. - Herbert Kociemba, Jul 02 2004
If we consider a(4*k+2), then 2^4 == 3^4 == 3 (mod 13); 2^(4*k+2) + 3^(4*k+2) == 3^k*(4+9) == 3*0 == 0 (mod 13). So a(4*k+2) can never be prime. - Jose Brox, Dec 27 2005
If k is odd, then a(n*k) is divisible by a(n), since: a(n*k) = (2^n)^k + (3^n)^k = (2^n + 3^n)*((2^n)^(k-1) - (2^n)^(k-2) (3^n) + - ... + (3^n)^(k-1)). So the only possible primes in the sequence are a(0) and a(2^n) for n>=1. I've checked that a(2^n) is composite for 3 <= n <= 15. As with Fermat primes, a probabilistic argument suggests that there are only finitely many primes in the sequence. - Dean Hickerson, Dec 27 2005
Let x,y,z be elements from some power set P(n), i.e., the power set of a set of n elements. Define a function f(x,y,z) in the following manner: f(x,y,z) = 1 if x is a subset of y and y is a subset of z and x does not equal z; f(x,y,z) = 0 if x is not a subset of y or y is not a subset of z or x equals z. Now sum f(x,y,z) for all x,y,z of P(n). This gives a(n). - Ross La Haye, Dec 26 2005
Number of monic (irreducible) polynomials of degree 1 over GF(2^n). - Max Alekseyev, Jan 13 2006
Let P(A) be the power set of an n-element set A and B be the Cartesian product of P(A) with itself. Then a(n) = the number of (x,y) of B for which x does not equal y. - Ross La Haye, Jan 02 2008
For n>1: central terms of the triangle in A173787. - Reinhard Zumkeller, Feb 28 2010
Pronic numbers of the form: (2^n - 1)*2^n, which is the n-th Mersenne number times 2^n, see A000225 and A002378. - Fred Daniel Kline, Nov 30 2013
Indices where records of A037870 occur. - Philippe Beaudoin, Sep 03 2014
Half the total edge length for a minimum linear arrangement of a hypercube of dimension n. (See Harper's paper below for proof). - Eitan Frachtenberg, Apr 07 2017
Number of pairs in GF(2)^{n+1} whose dot product is 1. - Christopher Purcell, Dec 11 2021
LINKS
M. Archibald, A. Blecher, A. Knopfmacher, and M. E. Mays, Inversions and Parity in Compositions of Integers, J. Int. Seq., Vol. 23 (2020), Article 20.4.1.
L. H. Harper, Optimal Assignment of Numbers to Vertices, J. SIAM 12(1), p. 131--135, March 1964; alternative link.
Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
The Sixtieth William Lowell Putnam Mathematical Competition, Question A6, Amer. Math. Monthly 107 (Oct 2000), 721-732; see p. 725.
FORMULA
From Herbert Kociemba, Jul 02 2004: (Start)
G.f.: 2*x/((-1 + 2*x)*(-1 + 4*x)).
a(n) = 6*a(n-1) - 8*a(n-2). (End)
E.g.f.: exp(4*x) - exp(2*x). - Mohammad K. Azarian, Jan 14 2009
From Reinhard Zumkeller, Feb 07 2006, Jaroslav Krizek, Aug 02 2009: (Start)
a(n) = A099393(n)-A000225(n+1) = A083420(n)-A099393(n).
In binary representation, n>0: n 1's followed by n 0's (A138147(n)).
A000120(a(n)) = n.
A023416(a(n)) = n.
A070939(a(n)) = 2*n.
2*a(n)+1 = A030101(A099393(n)). (End)
a(n) = A085812(n) - A001700(n). - John Molokach, Sep 28 2013
a(n) = 2*A006516(n) = A000079(n)*A000225(n) = A265736(A000225(n)). - Reinhard Zumkeller, Dec 15 2015
a(n) = (4^(n/2) - 4^(n/4))*(4^(n/2) + 4^(n/4)). - Bruno Berselli, Apr 09 2018
Sum_{n>0} 1/a(n) = E - 1, where E is the Erdős-Borwein constant (A065442). - Peter McNair, Dec 19 2022
EXAMPLE
n=5: a(5) = 4^5 - 2^5 = 1024 - 32 = 992 -> '1111100000'.
MAPLE
A020522:=n->4^n-2^n; seq(A020522(n), n=0..50); # Wesley Ivan Hurt, Nov 29 2013
MATHEMATICA
Table[4^n - 2^n, {n, 40}] (* or *) LinearRecurrence[{6, -8}, {0, 2}, 40] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2012 *)
PROG
(Sage) [4^n - 2^n for n in range(0, 23)] # Zerinvary Lajos, Jun 05 2009
(Magma) [4^n - 2^n: n in [0..60]]; // Vincenzo Librandi, Apr 26 2011
(PARI) a(n)=4^n-2^n \\ Charles R Greathouse IV, Jan 30 2012
(Haskell)
a020522 = (* 2) . a006516 -- Reinhard Zumkeller, Dec 15 2015
CROSSREFS
Ratio of successive terms of A028365.
KEYWORD
nonn,easy
STATUS
approved
a(n) = 2^(2*n+1) + 1.
+10
24
3, 9, 33, 129, 513, 2049, 8193, 32769, 131073, 524289, 2097153, 8388609, 33554433, 134217729, 536870913, 2147483649, 8589934593, 34359738369, 137438953473, 549755813889, 2199023255553
OFFSET
0,1
COMMENTS
Number of pairs of polynomials (f,g) in GF(2)[x] satisfying deg(f) <= n, deg(g) <= n and gcd(f,g) = 1.
An unpublished result due to Stephen Suen, David desJardins, and W. Edwin Clark. This is the case k = 2, q = 2 of their formula q^((n+1)*k) * (1 - 1/q^(k-1) + (q-1)/q^((n+1)*k)) for the number of ordered k-tuples (f_1, ..., f_k) of polynomials in GF(q)[x] such that deg(f_i) <= n for all i and gcd(f_1, ..., f_k) = 1.
Apparently the same as A084508 shifted left.
Terms in binary are palindromes of the form 1x1 where x is a string of 2*n zeros (A152577). - Brad Clardy, Sep 01 2011
For n > 0, a(n) is the number k such that the number of iterations of the map k -> (3k +1)/8 == 4 (mod 8) until reaching (3k +1)/8 <> 4 (mod 8) equals n. (see the Collatz problem: the start of the parity trajectory of a(n) is n times {100} = 100100100100...100abcd...). - Michel Lagneau, Jan 23 2012
An Engel expansion of 2 to the base 4 as defined in A181565, with the associated series expansion 2 = 4/3 + 4^2/(3*9) + 4^3/(3*9*33) + 4^4/(3*9*33*129) + .... Cf. A199561 and A207262. - Peter Bala, Oct 29 2013
For x = A083420(n), y = A000079(n+1), z = a(n) then x^2 + 2*y^2 = z^2. - Vincenzo Librandi, Jun 09 2014
A254046(n+1) is the 3-adic valuation of a(n). - Fred Daniel Kline, Jan 11 2017
FORMULA
G.f.: (3-6*x)/((1-x)*(1-4*x)).
a(n) = 3 *A007583(n).
a(n) = 4*a(n-1) - 3. - Lekraj Beedassy, Apr 29 2005
a(n) = A099393(n+1) - 2*A099393(n). - Brad Clardy, Sep 01 2011
a(n) = 2^(2*n + 1) * a(-1-n) for all n in Z. - Michael Somos, Jan 11 2017
a(n) = A283070(n) - 1. - Peter M. Chema, Mar 02 2017
EXAMPLE
a(0) = 3 since there are three pairs, (0,1), (1,0) and (1,1) of polynomials (f,g) in GF(2)[x] of degree at most 0 such that gcd(f,g) = 1.
MATHEMATICA
Table[2^(2 n + 1) + 1, {n, 0, 20}] (* or *) 3 NestList[4 # - 1 &, 1, 20]
(* or *) CoefficientList[Series[(3 - 6 x)/((1 - x) (1 - 4 x)), {x, 0, 20}], x] (* Michael De Vlieger, Mar 03 2017 *)
PROG
(Magma) [2^(2*n+1) + 1: n in [0..30]]; // Vincenzo Librandi, May 16 2011
(PARI) a(n)=2^(2*n+1)+1 \\ Charles R Greathouse IV, Sep 24 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
W. Edwin Clark, Aug 29 2003
STATUS
approved
a(n) = 4^n + 2^n - 1.
+10
15
1, 5, 19, 71, 271, 1055, 4159, 16511, 65791, 262655, 1049599, 4196351, 16781311, 67117055, 268451839, 1073774591, 4295032831, 17180000255, 68719738879, 274878431231, 1099512676351, 4398048608255, 17592190238719
OFFSET
0,2
COMMENTS
Number of occurrences of letter 2 in the (n+1)-st Peano word.
In binary representation, a leading one followed by n zeros then by n ones. - Reinhard Zumkeller, Feb 07 2006
The number of involutions in group G_n G_{n+1} = G_n(operation) D_8. For example, Q_8->1 involution; D_8->5 involutions - Roger L. Bagula, Aug 08 2007
LINKS
A. M. Cohen and D. E. Taylor, On a Certain Lie Algebra Defined By a Finite Group, American Mathematical Monthly, volume 114, number 7, August-September 2007, pages 633-638. Also preprint. a(n) = t_n in proof of theorem 6.2.
Sergey Kitaev and Toufik Mansour, The Peano curve and counting occurrences of some patterns, arXiv:math/0210268 [math.CO], 2002. Section 3 lemma 1, d_2^n = a(n-1).
Sergey Kitaev, Toufik Mansour, and Patrice Séébold, Generating the Peano curve and counting occurrences of some patterns, Journal of Automata, Languages and Combinatorics, volume 9, number 4, 2004, pages 439-455. Also at ResearchGate. Section 4, |P_n|_r = a(n-1).
FORMULA
a(n) = A063376(n)-1.
a(n) = A020522(n) + A000225(n+1) = A083420(n) - A020522(n); A000120(a(n)) = n+1; A023416(a(n))=n; A070939(a(n)) = 2*n+1; 2*A020522(n)+1 = A030101(a(n)). - Reinhard Zumkeller, Feb 07 2006
a(n) = 2^(2*n-1) + 2*a(n-1) + 1. - Roger L. Bagula, Aug 08 2007
From Mohammad K. Azarian, Jan 15 2009: (Start)
G.f.: 1/(1-4*x) + 1/(1-2*x) - 1/(1-x).
E.g.f.: e^(4*x) + e^(2*x) - e^x. (End)
a(n) = A279396(n+4, 4). - Wolfdieter Lang, Jan 10 2017
a(n) = A002378(2^n) - 1 = 2*A000217(2^n) - 1 = 2*A007582(n) - 1. - Peter Munn, Nov 20 2022
EXAMPLE
n=5: a(5)=4^5+2^5-1=1024+32-1=1055 -> '10000011111'.
MATHEMATICA
LinearRecurrence[{7, -14, 8}, {1, 5, 19}, 30] (* Harvey P. Dale, Sep 06 2015 *)
PROG
(Magma) [4^n + 2^n - 1: n in [0..60]]; // Vincenzo Librandi, Apr 26 2011
(PARI) a(n)=4^n+2^n-1; \\ Charles R Greathouse IV, Sep 24 2015
CROSSREFS
See the formula section for the relationships with A000120, A000217, A000225, A002378, A007582, A020522, A023416, A030101, A063376, A070939, A083420, A279396.
KEYWORD
nonn,easy
AUTHOR
Ralf Stephan, Oct 20 2004
STATUS
approved

Search completed in 0.045 seconds