Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a100926 -id:a100926
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of partitions of n into parts free of both odd squares and even numbers which are not squares, the odd parts they occur with a single multiplicity, there is no restriction on the even parts.
+10
1
1, 0, 0, 1, 1, 1, 0, 2, 2, 1, 1, 3, 3, 2, 2, 5, 6, 3, 5, 8, 9, 7, 8, 13, 14, 10, 14, 19, 20, 17, 20, 29, 30, 26, 32, 42, 45, 41, 47, 63, 64, 60, 70, 88, 91, 87, 99, 124, 128, 123, 143, 172, 179, 176, 200, 240, 246, 246, 279, 325, 337, 338, 381, 440, 456, 461, 519, 590, 615
OFFSET
0,8
LINKS
Noureddine Chair, Partition Identities From Partial Supersymmetry, arXiv:hep-th/0409011, 2004.
FORMULA
G.f.: Product_{k>0} (1+x^(2*k-1))/(1-(-1)^k*x^(k^2)).
EXAMPLE
a(16)=6 because 16 = 13+3 = 11+5 = 7+5+4 = 5+3+4+4 = 4+4+4+4.
MAPLE
series(product((1+x^(2*k-))/(1-(-1)^k*x^(k^2)), k=1..100), x=0, 100);
MATHEMATICA
With[{m=80}, CoefficientList[Series[Product[(1+x^(2*k-1))/(1-(-1)^k *x^(k^2)), {k, m+2}], {x, 0, m}], x]] (* G. C. Greubel, Mar 28 2023 *)
PROG
(Magma)
m:=80;
f:= func< x | (&*[(1+x^(2*k-1))/(1-(-1)^k*x^(k^2)): k in [1..m+2]]) >;
R<x>:=PowerSeriesRing(Integers(), m);
Coefficients(R!( f(x) )); // G. C. Greubel, Mar 28 2023
(SageMath)
m=80
def f(x): return product( (1+x^(2*k-1))/(1-(-1)^k*x^(k^2)) for k in range(1, m+2))
def A100522_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( f(x) ).list()
A100522_list(m) # G. C. Greubel, Mar 28 2023
CROSSREFS
Cf. A100926.
KEYWORD
nonn
AUTHOR
Noureddine Chair, Nov 25 2004
EXTENSIONS
Offset corrected by G. C. Greubel, Mar 28 2023
STATUS
approved
Number of partitions of n into parts free of odd hexagonal numbers and the only number with multiplicity in the unrestricted partitions is the number 2 with multiplicity of the form 3k+l, where k is a positive integer and l=0,1.
+10
0
1, 0, 1, 1, 1, 2, 3, 3, 4, 6, 6, 9, 11, 13, 16, 20, 20, 23, 29, 35, 41, 49, 59, 68, 82, 96, 112, 131, 154, 178, 207, 242, 277, 321, 371, 425, 489, 562, 641, 733, 839, 953, 1086, 1236, 1399, 1588, 1798, 2032, 2295, 2592, 2917, 3285
OFFSET
1,6
LINKS
Noureddine Chair, Partition Identities From Partial Supersymmetry, arXiv:hep-th/0409011v1, 2004.
FORMULA
G.f.: product_{k>0}(1+x^k)/(1-(-1)^k*x^(2*k^2-k)).
EXAMPLE
a(15)=20 because 15 =13+2 =12+3 =11+4 =10+5 =10+3+2 =9+6=9+4+2 =8+7 =8+5+2 =8+4+3 =7+6+2 =7+5+3 =6+5+4 =6+4+3+2 =9+2+2+2 =7+2+2+2+2 =6+3+2+2+2 =5+4+2+2+2 =4+3+2+2+2+2 =3+2+2+2+2+2+2"
MAPLE
series(product((1+x^k)/(1-(-1)^k*x^(2*k^2-k)), k=1..100), x=0, 100);
CROSSREFS
KEYWORD
nonn
AUTHOR
Noureddine Chair, Nov 29 2004
STATUS
approved

Search completed in 0.007 seconds