Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a101035 -id:a101035
     Sort: relevance | references | number | modified | created      Format: long | short | data
Square of triangle A127139, row sums = A101035.
+20
2
1, -4, 1, -6, 0, 1, 4, -4, 0, 1, -10, 0, 0, 0, 1, 24, -6, -4, 0, 0, 1, -14, 0, 0, 0, 0, 0, 1, 0, 4, 0, -4, 0, 0, 0, 1, 9, 0, -6, 0, 0, 0, 0, 0, 1, 40, -10, 0, 0, -4, 0, 0, 0, 0, 1
OFFSET
1,2
COMMENTS
Row sums = A101035: (1, -3, -5, 1, -9, 15, ...). A127140 * [1, 2, 3, ...] = A055615: (1, -2, -3, 0, -5, 6, -7, ...).
FORMULA
Square of A127139.
EXAMPLE
First few rows of the triangle:
1;
-4, 1;
-6, 0, 1;
4, -4, 0, 1;
-10, 0, 0, 0, 1;
24, -6, -4, 0, 0, 1;
-14, 0, 0, 0, 0, 0, 1;
0, 4, 0, -4, 0, 0, 0, 1;
9, 0, -6, 0, 0, 0, 0, 0, 1;
...
CROSSREFS
KEYWORD
tabl,sign
AUTHOR
Gary W. Adamson, Jan 06 2007
STATUS
approved
Dirichlet inverse of the Abelian group count (A000688).
+10
6
1, -1, -1, -1, -1, 1, -1, 0, -1, 1, -1, 1, -1, 1, 1, 0, -1, 1, -1, 1, 1, 1, -1, 0, -1, 1, 0, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, 0, -1, -1, -1, 1, 1, 1, -1, 0, -1, 1, 1, 1, -1, 0, 1, 0, 1, 1, -1, -1, -1, 1, 1, 0, 1, -1, -1, 1, 1, -1, -1, 0, -1, 1, 1, 1, 1, -1, -1, 0, 0, 1, -1, -1, 1, 1, 1, 0, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, 0, -1, 1, -1
OFFSET
1,1
COMMENTS
The simple formula which gives the value of this multiplicative function for the power of any prime can be derived from Euler's celebrated "Pentagonal Number Theorem" (applied to the generating function of the partition function A000041 on which A000688 is based).
LINKS
Gérard P. Michon, Multiplicative Functions.
Gérard P. Michon, Partition Function and Pentagonal Numbers.
FORMULA
Multiplicative function for which a(p^e) either vanishes or is equal to (-1)^m, for any prime p, if e is either m(3m-1)/2 or m(3m+1)/2 (these integers are the pentagonal numbers of the first and second kind, A000326 and A005449).
Dirichlet g.f.: 1 / Product_{k>=1} zeta(k*s). - Ilya Gutkovskiy, Nov 06 2020
Sum_{k=1..n} abs(a(k)) ~ c * n, where c = Product_{p prime} ((1-1/p) * (1 + Sum_{m>=1} (1/p^(m*(3*m-1)/2) + 1/p^(m*(3*m+1)/2)))) = 0.85358290653064143678... . - Amiram Eldar, Feb 17 2024
EXAMPLE
a(8) and a(27) are zero because the sequence vanishes for the cubes of primes. Not so with fifth powers of primes (since 5 is a pentagonal number) so a(32) is nonzero.
MAPLE
A000326inv := proc(n)
local x, a ;
for x from 0 do
a := x*(3*x-1)/2 ;
if a > n then
return -1 ;
elif a = n then
return x;
end if;
end do:
end proc:
A005449inv := proc(n)
local x, a ;
for x from 0 do
a := x*(3*x+1)/2 ;
if a > n then
return -1 ;
elif a = n then
return x;
end if;
end do:
end proc:
A129667 := proc(n)
local a, e1, e2 ;
a := 1 ;
for pe in ifactors(n)[2] do
e1 := A000326inv(op(2, pe)) ;
e2 := A005449inv(op(2, pe)) ;
if e1 >= 0 then
a := a*(-1)^e1 ;
elif e2 >= 0 then
a := a*(-1)^e2 ;
else
a := 0 ;
end if;
end do:
a;
end proc: # R. J. Mathar, Nov 24 2017
MATHEMATICA
a[n_] := a[n] = If[n == 1, 1, -Sum[FiniteAbelianGroupCount[n/d] a[d], {d, Most @ Divisors[n]}]];
Array[a, 100] (* Jean-François Alcover, Feb 16 2020 *)
KEYWORD
mult,easy,sign
AUTHOR
Gerard P. Michon, Apr 28 2007, May 01 2007
STATUS
approved
Dirichlet g.f.: 1 / zeta(s-1)^2.
+10
4
1, -4, -6, 4, -10, 24, -14, 0, 9, 40, -22, -24, -26, 56, 60, 0, -34, -36, -38, -40, 84, 88, -46, 0, 25, 104, 0, -56, -58, -240, -62, 0, 132, 136, 140, 36, -74, 152, 156, 0, -82, -336, -86, -88, -90, 184, -94, 0, 49, -100, 204, -104, -106, 0, 220, 0, 228, 232, -118, 240
OFFSET
1,2
COMMENTS
Dirichlet inverse of A038040.
Dirichlet convolution of A055615 with itself.
Moebius transform of A101035.
LINKS
FORMULA
a(1) = 1; a(n) = -Sum_{d|n, d<n} A038040(n/d) * a(d).
a(n) = n * A007427(n).
a(n) = Sum_{d|n} mu(n/d) * A101035(d).
Multiplicative with a(p) = -2*p, a(p^2) = p^2, and a(p) = 0 for e >= 3. - Amiram Eldar, Sep 15 2023
MATHEMATICA
a[1] = 1; a[n_] := -Sum[(n/d) DivisorSigma[0, n/d] a[d], {d, Most @ Divisors[n]}]; Table[a[n], {n, 1, 60}]
Table[n DivisorSum[n, MoebiusMu[n/#] MoebiusMu[#] &], {n, 1, 60}]
f[p_, e_] := Switch[e, 1, -2*p, 2, p^2, _, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 15 2023 *)
PROG
(PARI) for(n=1, 100, print1(direuler(p=2, n, (1 - p*X)^2)[n], ", ")) \\ Vaclav Kotesovec, Aug 22 2021
(PARI)
A007427(n) = if(n<1, 0, sumdiv(n, d, moebius(d) * moebius(n/d))); \\ From A007427
A328722(n) = (n*A007427(n)); \\ Antti Karttunen, Nov 15 2021
CROSSREFS
Cf. A007427, A008683, A038040, A046099 (positions of 0's), A055615, A101035.
KEYWORD
sign,easy,mult
AUTHOR
Ilya Gutkovskiy, Oct 26 2019
STATUS
approved
Dirichlet inverse of A002654.
+10
2
1, -1, 0, 0, -2, 0, 0, 0, -1, 2, 0, 0, -2, 0, 0, 0, -2, 1, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, -2, 0, 0, 0, 0, 2, 0, 0, -2, 0, 0, 0, -2, 0, 0, 0, 2, 0, 0, 0, -1, -1, 0, 0, -2, 0, 0, 0, 0, 2, 0, 0, -2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, -2, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 4, 0, 0, 0, -2, -2, 0, 0, 0, 0, 0, 0, -2, 1, 0, 0, -2, 0, 0, 0, 0, 2, 0, 0, -2, 0, 0, 0, -2, 0, 0, 0, 2, 0, 0
OFFSET
1,5
LINKS
FORMULA
Multiplicative function with a(p^e)=0 if e>2. a(2)=-1, a(4)=0. If p is a prime congruent to 3 modulo 4, then a(p)=0 and a(p^2)=-1. If p is a prime congruent to 1 modulo 4, then a(p)=-2 and a(p^2)=1.
Sum_{k=1..n} abs(a(k)) ~ c * n, where c = 3/(2*Pi*G) = 0.521269..., and G is Catalan's constant (A006752). - Amiram Eldar, Jan 22 2024
EXAMPLE
a(65)=4 because 65 is 5 times 13 and both of those primes are congruent to 1 modulo 4. Doubling an odd index yields the opposite of the value (e.g., a(130)=-4) because a(2)=-1. Doubling an even index yields zero.
MAPLE
A120630 := proc(n)
local a, pp;
if n = 1 then
1;
else
a := 1 ;
for pp in ifactors(n)[2] do
if op(2, pp) > 2 then
a := 0;
elif op(1, pp) = 2 then
if op(2, pp) = 1 then
a := -a ;
else
a := 0 ;
end if;
elif modp(op(1, pp), 4) = 3 then
if op(2, pp) = 1 then
a := 0 ;
else
a := -a ;
end if;
else
if op(2, pp) = 1 then
a := -2*a ;
else
;
end if;
end if;
end do:
a;
end if;
end proc: # R. J. Mathar, Sep 15 2015
MATHEMATICA
A120630[n_] := Module[{a, pp}, If[n == 1, 1, a = 1; Do[Which[pp[[2]] > 2, a = 0, pp[[1]] == 2, If[pp[[2]] == 1, a = -a, a = 0], Mod[pp[[1]], 4] == 3, If[pp[[2]] == 1, a = 0, a = -a], True, If[pp[[2]] == 1, a = -2*a]], {pp, FactorInteger[n]}]; a]]; Array[A120630, 120] (* Jean-François Alcover, Apr 24 2017, after R. J. Mathar *)
PROG
(PARI) seq(n)={dirdiv(vector(n, n, n==1), vector(n, n, sumdiv( n, d, (d%4==1) - (d%4==3))))} \\ Andrew Howroyd, Aug 05 2018
KEYWORD
mult,easy,sign
AUTHOR
Gerard P. Michon, Jun 25 2006
STATUS
approved
Dirichlet g.f.: 1 / (zeta(s) * zeta(s-1)^2).
+10
1
1, -5, -7, 8, -11, 35, -15, -4, 15, 55, -23, -56, -27, 75, 77, 0, -35, -75, -39, -88, 105, 115, -47, 28, 35, 135, -9, -120, -59, -385, -63, 0, 161, 175, 165, 120, -75, 195, 189, 44, -83, -525, -87, -184, -165, 235, -95, 0, 63, -175, 245, -216, -107, 45, 253, 60, 273, 295, -119, 616
OFFSET
1,2
COMMENTS
Dirichlet inverse of A060640.
Moebius transform applied twice to A101035.
LINKS
FORMULA
a(1) = 1; a(n) = -Sum_{d|n, d<n} A060640(n/d) * a(d).
a(n) = Sum_{d|n} A046692(n/d) * A055615(d).
Multiplicative with a(p^e) = -(2*p+1) if e=1, p^2+2*p if e=2, -p^2 if e=3, and 0 otherwise. - Amiram Eldar, Dec 02 2020
MATHEMATICA
a[1] = 1; a[n_] := -Sum[Sum[j DivisorSigma[0, j], {j, Divisors[n/d]}] a[d], {d, Most @ Divisors[n]}]; Table[a[n], {n, 1, 60}]
f[p_, e_] := Which[e==1, -(2*p+1), e==2, p^2+2*p, e==3, -p^2, e>3, 0]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 02 2020 *)
CROSSREFS
Cf. A046101 (positions of 0's), A046692, A055615, A060640, A101035.
KEYWORD
sign,mult
AUTHOR
Ilya Gutkovskiy, Oct 22 2019
STATUS
approved
Dirichlet g.f.: zeta(s-1) / (zeta(s) * zeta(s-2)).
+10
1
1, -3, -7, -2, -21, 21, -43, -4, -12, 63, -111, 14, -157, 129, 147, -8, -273, 36, -343, 42, 301, 333, -507, 28, -80, 471, -36, 86, -813, -441, -931, -16, 777, 819, 903, 24, -1333, 1029, 1099, 84, -1641, -903, -1807, 222, 252, 1521, -2163, 56, -252, 240, 1911, 314, -2757, 108, 2331
OFFSET
1,2
COMMENTS
Dirichlet inverse of A057660.
LINKS
Olivier Bordelles, A Multidimensional Cesaro Type Identity and Applications, J. Int. Seq. 18 (2015) # 15.3.7.
FORMULA
a(1) = 1; a(n) = -Sum_{d|n, d<n} A057660(n/d) * a(d).
a(n) = Sum_{d|n} phi(n/d) * mu(d) * d^2.
Multiplicative with a(p) = p - 1 - p^2, and a(p^e) = -p^(e-1) * (p-1)^2, for e > 1. - Amiram Eldar, Dec 03 2022
a(n) = Sum_{k = 1..n} gcd(k, n)^2 * mu(gcd(k, n)) (follows fom an identity of Cesàro. See, for example, Bordelles, Lemma 1). - Peter Bala, Jan 16 2024
MATHEMATICA
a[1] = 1; a[n_] := -Sum[DivisorSigma[2, (n/d)^2]/DivisorSigma[1, (n/d)^2] a[d], {d, Most @ Divisors[n]}]; Table[a[n], {n, 1, 55}]
Table[DivisorSum[n, EulerPhi[n/#] MoebiusMu[#] #^2 &], {n, 1, 55}]
f[p_, e_] := If[e == 1, p - 1 - p^2, -p^(e - 1)*(p - 1)^2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 03 2022 *)
PROG
(PARI) a(n)={sumdiv(n, d, eulerphi(n/d)*moebius(d)*d^2)} \\ Andrew Howroyd, Oct 25 2019
CROSSREFS
Cf. A000010, A008683, A030230 (positions of negative terms), A057660, A101035.
KEYWORD
sign,mult
AUTHOR
Ilya Gutkovskiy, Oct 22 2019
STATUS
approved
Dirichlet g.f.: zeta(s)^2 / zeta(s-1)^2.
+10
1
1, -2, -4, -1, -8, 8, -12, 0, 0, 16, -20, 4, -24, 24, 32, 1, -32, 0, -36, 8, 48, 40, -44, 0, 8, 48, 4, 12, -56, -64, -60, 2, 80, 64, 96, 0, -72, 72, 96, 0, -80, -96, -84, 20, 0, 88, -92, -4, 24, -16, 128, 24, -104, -8, 160, 0, 144, 112, -116, -32, -120, 120, 0, 3, 192
OFFSET
1,2
COMMENTS
Dirichlet inverse of A029935.
Dirichlet convolution of A023900 with itself.
Inverse Moebius transform of A101035.
LINKS
FORMULA
a(1) = 1; a(n) = -Sum_{d|n, d<n} A029935(n/d) * a(d).
a(n) = Sum_{d|n} A101035(d).
Multiplicative with a(p) = 2*(1-p), and a(p^e) = (p-1)*(e*p-p-e-1) for e > 1. - Amiram Eldar, Dec 03 2022
MATHEMATICA
a[1] = 1; a[n_] := -Sum[DirichletConvolve[EulerPhi[j], EulerPhi[j], j, n/d] a[d], {d, Most @ Divisors[n]}]; Table[a[n], {n, 1, 65}]
f[p_, e_] := If[e == 1, 2*(1 - p), (p - 1)*(e*p - p - e - 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 03 2022 *)
PROG
(PARI) seq(n)={dirdiv(vector(n, n, n==1), vector(n, n, sumdiv(n, d, eulerphi(d) * eulerphi(n/d))))} \\ Andrew Howroyd, Oct 25 2019
CROSSREFS
KEYWORD
sign,mult
AUTHOR
Ilya Gutkovskiy, Oct 23 2019
STATUS
approved
Sum of Pillai's arithmetical function (A018804) and its Dirichlet inverse.
+10
1
2, 0, 0, 9, 0, 30, 0, 21, 25, 54, 0, 35, 0, 78, 90, 49, 0, 51, 0, 63, 130, 126, 0, 95, 81, 150, 85, 91, 0, 0, 0, 113, 210, 198, 234, 172, 0, 222, 250, 171, 0, 0, 0, 147, 153, 270, 0, 235, 169, 147, 330, 175, 0, 231, 378, 247, 370, 342, 0, 405, 0, 366, 221, 257, 450, 0, 0, 231, 450, 0, 0, 424, 0, 438, 245, 259, 546
OFFSET
1,1
COMMENTS
No negative terms in range 1 .. 2^20.
Apparently, A030059 gives the positions of all zeros.
LINKS
FORMULA
a(n) = A018804(n) + A101035(n).
For n > 1, a(n) = -Sum_{d|n, 1<d<n} A018804(d) * A101035(n/d).
For all n >= 1, a(A030059(n)) = 0, a(A030229(n)) = 2*A018804(A030229(n)).
PROG
(PARI)
up_to = 16384;
A018804(n) = sumdiv(n, d, n*eulerphi(d)/d); \\ From A018804
DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0)))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v.
v101035 = DirInverseCorrect(vector(up_to, n, A018804(n)));
A101035(n) = v101035[n];
A347095(n) = (A018804(n)+A101035(n));
CROSSREFS
Cf. also A347094.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 18 2021
STATUS
approved
G.f. A(x) satisfies: 1 / (1 - x) = Product_{i>=1, j>=1} A(x^(i*j)).
+10
1
1, 1, -1, -3, -1, 1, 4, 2, -2, -5, 4, 2, -2, -10, 3, 10, 21, -15, -26, -23, 34, 28, 25, -54, -18, 2, 67, -48, -22, -55, 116, 44, 37, -227, -10, 32, 295, -85, -76, -336, 254, 74, 250, -451, 59, -127, 672, -294, -69, -761, 740, 77, 657, -1208, 59, -450, 1700, -487, 241, -1892, 1202
OFFSET
0,4
COMMENTS
Euler transform of A007427.
FORMULA
G.f. A(x) satisfies: 1 / (1 - x) = Product_{k>=1} A(x^k)^A000005(k).
G.f.: Product_{k>=1} 1 / (1 - x^k)^A007427(k).
G.f.: exp( Sum_{k>=1} A101035(k) * x^k / k ).
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} A101035(k) * a(n-k).
MATHEMATICA
nmax = 60; A007427[n_] := Sum[MoebiusMu[d] MoebiusMu[n/d], {d, Divisors[n]}]; CoefficientList[Series[Product[1/(1 - x^k)^A007427[k], {k, 1, nmax}], {x, 0, nmax}], x]
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Feb 10 2022
STATUS
approved
G.f. A(x) satisfies: (1 - x) = Product_{i>=1, j>=1} A(x^(i*j)).
+10
1
1, -1, 2, 0, 0, 4, -5, 9, -6, 3, 4, -9, 15, -17, 13, -8, 0, 1, -9, 12, -17, 15, -25, 29, -27, 12, -3, -14, 28, -55, 63, -54, 53, -46, 18, 32, -57, 85, -106, 122, -108, 43, 8, -29, 80, -161, 148, -115, 104, -78, 57, 29, -77, 89, -99, 263, -283, 182, -212, 133, 49
OFFSET
0,3
COMMENTS
Convolution inverse of A351402.
FORMULA
G.f. A(x) satisfies: (1 - x) = Product_{k>=1} A(x^k)^A000005(k).
G.f.: Product_{k>=1} (1 - x^k)^A007427(k).
G.f.: exp( -Sum_{k>=1} A101035(k) * x^k / k ).
a(0) = 1; a(n) = -(1/n) * Sum_{k=1..n} A101035(k) * a(n-k).
MATHEMATICA
nmax = 60; A007427[n_] := Sum[MoebiusMu[d] MoebiusMu[n/d], {d, Divisors[n]}]; CoefficientList[Series[Product[(1 - x^k)^A007427[k], {k, 1, nmax}], {x, 0, nmax}], x]
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Feb 10 2022
STATUS
approved

Search completed in 0.013 seconds