Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a112008 -id:a112008
     Sort: relevance | references | number | modified | created      Format: long | short | data
Coefficient triangle for polynomials used for o.g.f.s for unsigned Stirling1 diagonals.
+10
29
1, 2, 1, 6, 8, 1, 24, 58, 22, 1, 120, 444, 328, 52, 1, 720, 3708, 4400, 1452, 114, 1, 5040, 33984, 58140, 32120, 5610, 240, 1, 40320, 341136, 785304, 644020, 195800, 19950, 494, 1, 362880, 3733920, 11026296, 12440064, 5765500, 1062500, 67260, 1004, 1
OFFSET
0,2
COMMENTS
This is the row reversed second-order Eulerian triangle A008517(k+1,k+1-m). For references see A008517.
The o.g.f. for the k-th diagonal, k >= 1, of the unsigned Stirling1 triangle |A008275| is G1(1,x)=1/(1-x) if k=1 and G1(k,x) = g1(k-2,x)/(1-x)^(2*k-1), if k >= 2, with the row polynomials g1(k;x):=Sum_{m=0..k} a(k,m)*x^m.
The recurrence eq. for the row polynomials is g1(k,x)=((k+1)+k*x))*g1(k-1,x) + x*(1-x)*(d/dx)g1(k-1,x), k >= 1, with input g1(0,x):=1.
The column sequences start with A000142 (factorials), A002538, A002539, A112008, A112485.
This o.g.f. computation was inspired by Bender et al. article where the Stirling polynomials have been rediscussed.
The A163936 triangle is identical to the triangle given above except for an extra right hand column [1, 0, 0, 0, ... ]. The A163936 triangle is related to the higher order exponential integrals E(x,m,n), see A163931 and A163932. - Johannes W. Meijer, Oct 16 2009
LINKS
Robert Israel, Table of n, a(n) for n = 0..10010 (rows 0 to 140, flattened)
C. M. Bender, D. C. Brody and B. K. Meister, Bernoulli-like polynomials associated with Stirling Numbers, arXiv:math-ph/0509008 [math-ph], 2005.
Wolfdieter Lang, First 10 rows.
Wolfdieter Lang, On Generating functions of Diagonals Sequences of Sheffer and Riordan Number Triangles, arXiv:1708.01421 [math.NT], August 2017.
R. Paris, A uniform asymptotic expansion for the incomplete gamma function, Journal of Computational and Applied Mathematics, 148 (2002), p. 223-239. See 234. [Tom Copeland, Jan 03 2016]
FORMULA
a(k, m) = (k+m+1)*a(k-1, m) + (k-m+1)*a(k-1, m-1), if k >= m >= 0, a(0, 0)=1; a(k, -1):=0, otherwise 0.
a(k,m) = Sum_{n=0..m} (-1)^(k+n+1)*C(2*k+3,n)*Stirling1(m+k-n+2,m+1-n). - Johannes W. Meijer, Oct 16 2009
The compositional inverse (with respect to x) of y = y(t,x) = (x+t*log(1-x)) is x = x(t,y) = 1/(1-t)*y + t/(1-t)^3*y^2/2! + (2*t+t^2)/(1-t)^5*y^3/3! + (6*t+8*t^2+t^3)/(1-t)^7*y^4/4! + .... The numerator polynomials of the rational functions in t are the row polynomials of this triangle. As observed above, the rational functions in t are the generating functions for the diagonals of |A008275|. See the Bala link for a proof. Cf. A008517. - Peter Bala, Dec 02 2011
EXAMPLE
Triangle begins:
1;
2, 1;
6, 8, 1;
24, 58, 22, 1;
120, 444, 328, 52, 1;
...
G.f. for k=3 sequence A000914(n-1), [2,11,35,85,175,322,546,...], is G1(3,x)= g1(1,x)/(1-x)^5= (2+x)/(1-x)^5.
MAPLE
a:= proc(k, m) option remember; if m >= 0 and k >= 0 then (k+m+1)*procname(k-1, m)+(k-m+1)*procname(k-1, m-1) else 0 fi end proc:
a(0, 0):= 1:
seq(seq(a(k, m), m=0..k), k=0..10); # Robert Israel, Jul 20 2017
MATHEMATICA
a[k_, m_] = Sum[(-1)^(k + n + 1)*Binomial[2k + 3, n]*StirlingS1[m + k - n + 2, m + 1 - n], {n, 0, m}]; Flatten[Table[a[k, m], {k, 0, 8}, {m, 0, k}]][[1 ;; 45]] (* Jean-François Alcover, Jun 01 2011, after Johannes W. Meijer *)
PROG
(PARI) a(k, m)=sum(n=0, m, (-1)^(k + n + 1)*binomial(2*k + 3, n)*stirling(m + k - n + 2, m + 1 - n, 1));
for(k=0, 10, for(m=0, k, print1(a(k, m), ", "))) \\ Indranil Ghosh, Jul 21 2017
CROSSREFS
Row sums give A001147(k+1) = (2*k+1)!!, k>=0.
KEYWORD
nonn,easy,tabl
AUTHOR
Wolfdieter Lang, Sep 12 2005
STATUS
approved
E2(n, k), the second-order Eulerian numbers with E2(0, k) = δ_{0, k}. Triangle read by rows, E2(n, k) for 0 <= k <= n.
+10
17
1, 0, 1, 0, 1, 2, 0, 1, 8, 6, 0, 1, 22, 58, 24, 0, 1, 52, 328, 444, 120, 0, 1, 114, 1452, 4400, 3708, 720, 0, 1, 240, 5610, 32120, 58140, 33984, 5040, 0, 1, 494, 19950, 195800, 644020, 785304, 341136, 40320, 0, 1, 1004, 67260, 1062500, 5765500, 12440064, 11026296, 3733920, 362880
OFFSET
0,6
COMMENTS
The second-order Eulerian number E2(n, k) is the number of Stirling permutations of order n with exactly k descents; here the last index is defined to be a descent. More formally, let Q_n denote the set of permutations of the multiset {1,1,2,2, ..., n,n} in which, for all j, all entries between two occurrences of j are larger than j, then E2(n, k) = card({s in Q_n with des(s) = k}), where des(s) = card({j: s(j) > s(j+1)}) is the number of descents of s.
Also the number of Riordan trapezoidal words of length n with k distinct letters (see Riordan 1976, p. 9).
Also the number of rooted plane trees on n + 1 vertices with k leaves (see Janson 2008, p. 543).
Let b(n) = (1/2)*Sum_{k=0..n-1} (-1)^k*E2(n-1, k+1) / C(2*n-1, k+1). Apparently b(n) = Bernoulli(n, 1) = -n*Zeta(1 - n) = Integral_{x=0..1}F_n(x) for n >= 1. Here F_n(x) are the signed Fubini polynomials (A278075). (See Rzadkowski and Urlinska, example 4.)
REFERENCES
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd ed. Addison-Wesley, Reading, MA, 1994, p. 270.
LINKS
J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Generalized Stirling permutations and forests: Higher-order Eulerian and Ward numbers, Electronic Journal of Combinatorics 22(3), 2015.
Sergi Elizalde, Descents on quasi-Stirling permutations, arXiv:2002.00985 [math.CO], 2020.
I. Gessel and R. P. Stanley, Stirling polynomials, J. Combin. Theory, A 24, 24-33, 1978.
Svante Janson, Plane recursive trees, Stirling permutations and an urn model, Fifth Colloquium on Mathematics and Computer Science, 541-547, Discrete Math. Theor. Comput. Sci. Proc., AI, 2008.
Peter Luschny, A companion to A340556, A SageMath-Jupyter notebook, Feb. 2021.
John Riordan, The blossoming of Schröder's fourth problem, Acta Math., 137 (1976), 1-16.
G. Rzadkowski, M. Urlinska, A Generalization of the Eulerian Numbers, arXiv:1612.06635 [math.CO], 2016
FORMULA
E2(n, k) = E2(n-1, k)*k + E2(n-1, k-1)*(2*n - k) for n > 0 and 0 <= k <= n, and E2(0, 0) = 1; in all other cases E(n, k) = 0.
E2(n, k) = Sum_{j=0..n-k}(-1)^(n-j)*binomial(2*n+1, j)*Stirling1(2*n-k-j+1, n-k-j+1).
E2(n, k) = Sum_{j=0..k}(-1)^(k-j)*binomial(2*n + 1, k - j)*Stirling2(n + j, j).
Stirling1(x, x - n) = (-1)^n*Sum_{k=0..n} E2(n, k)*binomial(x + k - 1, 2*n).
Stirling2(x, x - n) = Sum_{k=0..n} E2(n, k)*binomial(x + n - k, 2*n).
E2poly(n, x) = Sum_{k=0..n} E2(n, k)*x^k, as row polynomials.
E2poly(n, x) = x*(x-1)^(2*n)*d_{x}((1-x)^(1-2*n)*E2poly(n-1)) for n>=1 and E2poly(0)=1.
E2poly(n, x) = (1 - x)^(2*n + 1)*Sum_{k=0..n}(k^(n + k)/k!*(x*exp(-x))^k.
W(n, k) = [x^k] (1+x)^n*E2poly(n, x/(1 + x)) are the Ward numbers A269939.
E2(n, k) = [x^k] (1-x)^n*Wpoly(n, x/(1 - x)); Wpoly(n, x) = Sum_{k=0..n}W(n, k)*x^k.
W(n, k) = Sum_{j=0..k} E2(n, j)*binomial(n - j, n - k).
E2(n, k) = Sum_{j=0..k} (-1)^(k-j)*W(n, j)*binomial(n - j, k - j).
The compositional inverse with respect to x of x - t*(exp(x) - 1) (see B. Drake):
T(n, k) = [t^k](n+1)!*(1-t)^(2*n+1)*[x^(n+1)] InverseSeries(x - t*(exp(x)-1), x).
AS1(n, k) = Sum_{j=0..n-k} binomial(j, n-2*k)*E2(n-k, j+1), where AS1(n, k) are the associated Stirling numbers of the first kind (A008306, A106828).
E2(n, k) = Sum_{j=0..n-k+1} (-1)^(n-k-j+1)*AS1(n+j, j)*binomial(n-j, n-k-j+1), for n >= 1.
AS2(n, k) = Sum_{j=0..n-k} binomial(j, n-2*k)*E2(n-k, n-k-j) for n >=1, where AS2(n, k) are the associated Stirling numbers of the second kind (A008299, A137375).
E2(n, k) = Sum_{j=0..k} (-1)^(k-j)*AS2(n + j, j)*binomial(n - j, k - j).
EXAMPLE
Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 1, 2;
[3] 0, 1, 8, 6;
[4] 0, 1, 22, 58, 24;
[5] 0, 1, 52, 328, 444, 120;
[6] 0, 1, 114, 1452, 4400, 3708, 720;
[7] 0, 1, 240, 5610, 32120, 58140, 33984, 5040;
[8] 0, 1, 494, 19950, 195800, 644020, 785304, 341136, 40320;
[9] 0, 1, 1004, 67260, 1062500, 5765500, 12440064, 11026296, 3733920, 362880.
.
To illustrate the generating function for row 3: The expansion of (1 - x)^7*(x*exp(-x) + 16*x^2*exp(-x)^2 + (243*x^3*exp(-x)^3)/2) gives the polynomial x + 8*x^2 + 6*x^3. The coefficients of this polynomial give row 3.
.
Stirling permutations of order 3 with exactly k descents: (When counting the descents one may assume an invisible '0' appended to the permutations.)
T[3, k=0]:
T[3, k=1]: 112233;
T[3, k=2]: 331122; 223311; 221133; 133122; 122331; 122133; 113322; 112332;
T[3, k=3]: 332211; 331221; 233211; 221331; 133221; 123321.
MAPLE
# Using the recurrence:
E2 := proc(n, k) option remember;
if k = 0 and n = 0 then return 1 fi; if n < 0 then return 0 fi;
E2(n-1, k)*k + E2(n-1, k-1)*(2*n - k) end: seq(seq(E2(n, k), k = 0..n), n = 0..9);
# Using the row generating function:
E2egf := n -> (1-x)^(2*n+1)*add(k^(n+k)/k!*(x*exp(-x))^k, k=0..n);
T := (n, k) -> coeftayl(E2egf(n), x=0, k): seq(print(seq(T(n, j), j=0..n)), n=0..7);
# Using the built-in function:
E2 := (n, k) -> `if`(k=0, k^n, combinat:-eulerian2(n, k-1)):
# Using the compositional inverse (series reversion):
E2triangle := proc(N) local r, s, C; Order := N + 2;
s := solve(y = series(x - t*(exp(x) - 1), x), x):
r := n -> -n!*(t - 1)^(2*n - 1)*coeff(s, y, n); C := [seq(expand(r(n)), n = 1..N)];
seq(print(seq(coeff(C[n+1], t, k), k = 0..n)), n = 0..N-1) end: E2triangle(10);
MATHEMATICA
T[n_, k_] := T[n, k] = If[k == 0, Boole[n == 0], If[n < 0, 0, k T[n - 1, k] + (2 n - k) T[n - 1, k - 1]]]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten
(* Via row polynomials: *)
E2poly[n_] := If[n == 0, 1,
Expand[Simplify[x (x - 1)^(2 n) D[((1 - x)^(1 - 2 n) E2poly[n - 1]), x]]]];
Table[CoefficientList[E2poly[n], x], {n, 0, 9}] // Flatten
(* Series reversion *)
Revert[gf_, len_] := Module[{S = InverseSeries[Series[gf, {x, 0, len + 1}], x]},
Table[CoefficientList[(n + 1)! (1 - t)^(2 n + 1) Coefficient[S, x, n + 1], t],
{n, 0, len}] // Flatten]; Revert[x + t - t Exp[x], 6]
PROG
(PARI)
E2poly(n) = if(n == 0, 1, x*(x-1)^(2*n)*deriv((1-x)^(1-2*n)*E2poly(n-1)));
{ for(n = 0, 9, print(Vecrev(E2poly(n)))) }
(PARI) T(n, k) = sum(j=0, n-k, (-1)^(n-j)*binomial(2*n+1, j)*stirling(2*n-k-j+1, n-k-j+1, 1)); \\ Michel Marcus, Feb 11 2021
(SageMath) # See link to notebook.
CROSSREFS
Indexing the second-order Eulerian numbers comes in three flavors: A008517 (following Riordan and Comtet), A201637 (following Graham, Knuth, and Patashnik) and this indexing, extending the definition of Gessel and Stanley. (A008517 is the main entry of the numbers.) The corresponding triangles of the first-order Eulerian numbers are A008292, A173018, and A123125.
Row reversed: A163936 (with offset = 0).
Values: E2poly(n, 1) = A001147(n), E2poly(n, -1) ~ -A001662(n+1), E2poly(n, 2) = A112487(n), 2^n*E2poly(n, 1/2) = A000311(n+1), 2^n*E2poly(n, -1/2) = A341106(n).
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Feb 05 2021
STATUS
approved
Triangle related to the o.g.f.s. of the right-hand columns of A130534 (E(x,m=1,n)).
+10
16
1, 1, 0, 2, 1, 0, 6, 8, 1, 0, 24, 58, 22, 1, 0, 120, 444, 328, 52, 1, 0, 720, 3708, 4400, 1452, 114, 1, 0, 5040, 33984, 58140, 32120, 5610, 240, 1, 0, 40320, 341136, 785304, 644020, 195800, 19950, 494, 1, 0, 362880, 3733920, 11026296, 12440064, 5765500, 1062500
OFFSET
1,4
COMMENTS
The asymptotic expansions of the higher-order exponential integral E(x,m=1,n) lead to triangle A130524, see A163931 for information on E(x,m,n). The o.g.f.s. of the right-hand columns of triangle A130534 have a nice structure: gf(p) = W1(z,p)/(1-z)^(2*p-1) with p = 1 for the first right-hand column, p = 2 for the second right-hand column, etc. The coefficients of the W1(z,p) polynomials lead to the triangle given above, n >= 1 and 1 <= m <= n. Our triangle is the same as A112007 with an extra right-hand column, see also the second Eulerian triangle A008517. The row sums of our triangle lead to A001147.
We observe that the row sums of the triangles A163936 (m=1), A163937 (m=2), A163938 (m=3) and A163939 (m=4) for z=1 lead to A001147, A001147 (minus a(0)), A001879 and A000457 which are the first four left-hand columns of the triangle of the Bessel coefficients A001497 or, if one wishes, the right-hand columns of A001498. We checked this phenomenon for a few more values of m and found that this pattern persists: m = 5 leads to A001880, m=6 to A001881, m=7 to A038121 and m=8 to A130563 which are the next left- (right-) hand columns of A001497 (A001498). An interesting phenomenon.
If one assumes the triangle not (1,1) based but (0,0) based, one has T(n, k) = E2(n, n-k), where E2(n, k) are the second-order Eulerian numbers A340556. - Peter Luschny, Feb 12 2021
FORMULA
a(n, m) = Sum_{k=0..(m-1)} (-1)^(n+k+1)*binomial(2*n-1,k)*Stirling1(m+n-k-1,m-k), for 1 <= m <= n.
Assuming offset = 0 the T(n, k) are the coefficients of recursively defined polynomials. T(n, k) = [x^k] x^n*E2poly(n, 1/x), where E2poly(n, x) = x*(x - 1)^(2*n)*d_{x}((1 - x)^(1 - 2*n)*E2poly(n - 1, x))) for n >= 1 and E2poly(0, x) = 1. - Peter Luschny, Feb 12 2021
EXAMPLE
Triangle starts:
[ 1] 1;
[ 2] 1, 0;
[ 3] 2, 1, 0;
[ 4] 6, 8, 1, 0;
[ 5] 24, 58, 22, 1, 0;
[ 6] 120, 444, 328, 52, 1, 0;
[ 7] 720, 3708, 4400, 1452, 114, 1, 0;
[ 8] 5040, 33984, 58140, 32120, 5610, 240, 1, 0;
[ 9] 40320, 341136, 785304, 644020, 195800, 19950, 494, 1, 0;
The first few W1(z,p) polynomials are
W1(z,p=1) = 1/(1-z);
W1(z,p=2) = (1 + 0*z)/(1-z)^3;
W1(z,p=3) = (2 + 1*z + 0*z^2)/(1-z)^5;
W1(z,p=4) = (6 + 8*z + 1*z^2 + 0*z^3)/(1-z)^7.
MAPLE
with(combinat): a := proc(n, m): add((-1)^(n+k+1)*binomial(2*n-1, k)*stirling1(m+n-k-1, m-k), k=0..m-1) end: seq(seq(a(n, m), m=1..n), n=1..9); # Johannes W. Meijer, revised Nov 27 2012
MATHEMATICA
Table[Sum[(-1)^(n + k + 1)*Binomial[2*n - 1, k]*StirlingS1[m + n - k - 1, m - k], {k, 0, m - 1}], {n, 1, 10}, {m, 1, n}] // Flatten (* G. C. Greubel, Aug 13 2017 *)
PROG
(PARI) for(n=1, 10, for(m=1, n, print1(sum(k=0, m-1, (-1)^(n+k+1)* binomial(2*n-1, k)*stirling(m+n-k-1, m-k, 1)), ", "))) \\ G. C. Greubel, Aug 13 2017
(PARI) \\ assuming offset = 0:
E2poly(n, x) = if(n == 0, 1, x*(x-1)^(2*n)*deriv((1-x)^(1-2*n)*E2poly(n-1, x)));
{ for(n = 0, 9, print(Vec(E2poly(n, x)))) } \\ Peter Luschny, Feb 12 2021
CROSSREFS
Row sums equal A001147.
A000142, A002538, A002539, A112008, A112485 are the first few left hand columns.
A000007, A000012, A005803(n+2), A004301, A006260 are the first few right hand columns.
Cf. A163931 (E(x,m,n)), A048994 (Stirling1) and A008517 (Euler).
Cf. A112007, A163937 (E(x,m=2,n)), A163938 (E(x,m=3,n)) and A163939 (E(x,m=4,n)).
Cf. A001497 (Bessel), A001498 (Bessel), A001147 (m=1), A001147 (m=2), A001879 (m=3) and A000457 (m=4), A001880 (m=5), A001881 (m=6) and A038121 (m=7).
Cf. A340556.
KEYWORD
easy,nonn,tabl
AUTHOR
Johannes W. Meijer, Aug 13 2009
STATUS
approved
Fifth diagonal of second-order Eulerian triangle A008517. Fifth column (m=4) of triangle A112007.
+10
4
1, 114, 5610, 195800, 5765500, 155357384, 4002695088, 101180433024, 2549865473424, 64728375139872, 1666424486271456, 43708768764064128, 1171582385481357696, 32157753536587053312, 905080567903692754176
OFFSET
0,2
FORMULA
a(n)=A112007(n+4, 4), n>=0.
a(n)= (n+9)*a(n-1) + (n+1)*A112008(n), n>=1, a(0)=1.
Contribution from Johannes W. Meijer, Oct 16 2009: (Start)
a(n) = sum((-1)^(n+k+1)*binomial(2*n+11,k)*stirling1(n-k+10,5-k),k=0..4)
(End)
EXAMPLE
5610= a(2) = 11*114 + 3*1452.
CROSSREFS
Cf. A112008 (fourth diagonal of A008517 and fourth column of A112007).
Contribution from Johannes W. Meijer, Oct 16 2009: (Start)
Equals fifth left hand column of A163936.
(End)
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Sep 12 2005
STATUS
approved
Row reversed version of triangle A201637 (second-order Eulerian triangle).
+10
3
1, 0, 1, 0, 2, 1, 0, 6, 8, 1, 0, 24, 58, 22, 1, 0, 120, 444, 328, 52, 1, 0, 720, 3708, 4400, 1452, 114, 1, 0, 5040, 33984, 58140, 32120, 5610, 240, 1, 0, 40320, 341136, 785304, 644020, 195800, 19950, 494, 1, 0, 362880, 3733920, 11026296, 12440064, 5765500, 1062500, 67260, 1004, 1, 0, 3628800, 44339040, 162186912, 238904904, 155357384, 44765000, 5326160, 218848, 2026, 1
OFFSET
0,5
COMMENTS
See A201637, and also A008517 (offset 1 for rows and columns).
The row polynomials of this triangle P(n, x) = Sum_{m=0..n} T(n, m)*x^m appear as numerator polynomials in the o.g.f.s for the diagonal sequences of triangle A132393 (|Stirling1| with offset 0 for rows and columns). See the comment and the P. Bala link there.
For similar triangles see also A112007 and A163936.
FORMULA
T(n, m) = A201637(n, n-m), n >= m >= 0.
Recurrence: T(0, 0) = 1, T(n, -1) = 0, T(n, m) = 0 if n < m, (n-m+1)*T(n-1, m-1) + (n-1+m)*T(n-1, m), n >= 1, m = 0..n; from the A008517 recurrence.
T(0, 0) = 1, T(n, m) = Sum_{p = 0..m-1} (-1)^(n-p)*binomial(2*n+1, p)*A132393(n+m-p, m-p), n >= 1, m = 0..n; from a A008517 program.
EXAMPLE
The triangle T(n, m) begins:
n\m 0 1 2 3 4 5 6 7 8 9 ...
0: 1
1: 0 1
2: 0 2 1
3: 0 6 8 1
4: 0 24 58 22 1
5: 0 120 444 328 52 1
6: 0 720 3708 4400 1452 114 1
7: 0 5040 33984 58140 32120 5610 240 1
8: 0 40320 341136 785304 644020 195800 19950 494 1
9: 0 362880 3733920 11026296 12440064 5765500 1062500 67260 1004 1
...
MAPLE
T:= (n, k)-> combinat[eulerian2](n, n-k):
seq(seq(T(n, k), k=0..n), n=0..12); # Alois P. Heinz, Jul 26 2017
MATHEMATICA
Table[Boole[n == 0] + Sum[(-1)^(n + k) * Binomial[2 n + 1, k] StirlingS1[2 n - m - k, n - m - k], {k, 0, n - m - 1}], {n, 0, 10}, {m, n, 0, -1}] // Flatten (* Michael De Vlieger, Jul 21 2017, after Jean-François Alcover at A201637 *)
CROSSREFS
Columns m = 0..5: A000007, A000142, A002538, A002539, A112008, A112485.
Diagonals d = 0..3: A000012, A005803, A004301, A006260.
T(2n,n) gives A290306.
KEYWORD
nonn,easy,tabl
AUTHOR
Wolfdieter Lang, Jul 20 2017
STATUS
approved

Search completed in 0.010 seconds