Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a116539 -id:a116539
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of collections of nonempty multisets with a total of n objects having color set {1,...,k} for some k<=n.
+10
87
1, 1, 4, 16, 76, 400, 2356, 15200, 106644, 806320, 6526580, 56231024, 513207740, 4941362512, 50013751812, 530481210672, 5880285873060, 67954587978448, 816935340368068, 10196643652651664, 131904973822724540, 1765645473517011568, 24420203895517396180
OFFSET
0,3
COMMENTS
Number of multiset partitions of normal multisets of size n, where a multiset is normal if it spans an initial interval of positive integers. - Gus Wiseman, Jul 30 2018
LINKS
FORMULA
a(n) = Sum_{k=0..n} A255903(n,k).
EXAMPLE
a(0) = 1: {}.
a(1) = 1: {{1}}.
a(2) = 4: {{1},{1}}, {{1,1}}, {{1},{2}}, {{1,2}}.
a(3) = 16: {{1},{1},{1}}, {{1},{1,1}}, {{1,1,1}}, {{1},{1},{2}}, {{1},{2},{2}}, {{1},{1,2}}, {{1},{2,2}}, {{2},{1,1}}, {{2},{1,2}}, {{1,1,2}}, {{1,2,2}}, {{1},{2},{3}}, {{1},{2,3}}, {{2},{1,3}}, {{3},{1,2}}, {{1,2,3}}.
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
allnorm[n_]:=Function[s, Array[Count[s, y_/; y<=#]+1&, n]]/@Subsets[Range[n-1]+1];
Table[Length[Join@@mps/@allnorm[n]], {n, 6}] (* Gus Wiseman, Jul 30 2018 *)
PROG
(PARI)
R(n, k)={Vec(-1 + 1/prod(j=1, n, (1 - x^j + O(x*x^n))^binomial(k+j-1, j) ))}
seq(n) = {concat([1], sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) ))} \\ Andrew Howroyd, Sep 23 2023
CROSSREFS
Row sums of A255903. Also row sums of A317532.
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 10 2015
STATUS
approved
Number of graphs with loops spanning n labeled vertices.
+10
68
1, 1, 5, 45, 809, 28217, 1914733, 254409765, 66628946641, 34575388318705, 35680013894626133, 73392583417010454429, 301348381381966079690489, 2471956814761996896091805993, 40530184362443281653842556898237, 1328619783326799871943604598592805525
OFFSET
0,3
COMMENTS
The span of a graph is the union of its edges.
LINKS
FORMULA
Exponential transform of A062740, if we assume A062740(1) = 1.
Inverse binomial transform of A006125(n+1) = 2^binomial(n+1,2).
EXAMPLE
The a(2) = 5 edge-sets:
{{1,2}}
{{1,1},{1,2}}
{{1,1},{2,2}}
{{1,2},{2,2}}
{{1,1},{1,2},{2,2}}
MATHEMATICA
Table[Sum[(-1)^(n-k)*Binomial[n, k]*2^Binomial[k+1, 2], {k, 0, n}], {n, 10}]
(* second program *)
Table[Select[Expand[Product[1+x[i]*x[j], {j, n}, {i, j}]], And@@Table[!FreeQ[#, x[i]], {i, n}]&]/.x[_]->1, {n, 7}]
PROG
(PARI) a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*2^binomial(k+1, 2)) \\ Andrew Howroyd, Jan 06 2024
CROSSREFS
Cf. A000666, A006125, A006129 (loops not allowed), A054921, A062740, A116539, A320461, A322635, A048291 (for directed edgs).
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 22 2018
STATUS
approved
Number of regular simple graphs on n labeled nodes.
+10
32
1, 2, 2, 8, 14, 172, 932, 45936, 1084414, 155862512, 10382960972, 6939278572096, 2203360500122300, 4186526756621772344, 3747344008241368443820, 35041787059691023579970848, 156277111373303386104606663422, 4142122641757598618318165240180096
OFFSET
1,2
LINKS
E. A. Bender and E. R. Canfield, The asymptotic number of labeled graphs with given degree sequences, Journal of Combinatorial Theory, Series A, 24 (1978), 296-307.
Andrew Howroyd, PARI Program
Atabey Kaygun, Enumerating Labeled Graphs that Realize a Fixed Degree Sequence, arXiv:2101.02299 [math.CO], 2021.
B. D. McKay, Applications of a technique for labelled enumeration, Congress. Numerantium, 40 (1983), 207-221.
Wikipedia, Regular graph
EXAMPLE
From Gus Wiseman, Dec 19 2018: (Start)
A graph is regular if all vertices have the same degree. For example, the a(4) = 8 simple regular graphs are:
1 2
3 4
.
4---1 3---1 2---1
3---2 4---2 4---3
.
3---4 4---3 4---2
| | | | | |
1---2 1---2 1---3
.
4---3
| X |
2---1
(End)
MATHEMATICA
Table[Sum[SeriesCoefficient[Product[1+Times@@x/@s, {s, Subsets[Range[n], {2}]}], Sequence@@Table[{x[i], 0, k}, {i, n}]], {k, 0, n-1}], {n, 1, 9}] (* Gus Wiseman, Dec 19 2018 *)
PROG
(PARI) \\ See link for program file.
for(n=1, 10, print1(A295193(n), ", ")) \\ Andrew Howroyd, Aug 28 2019
CROSSREFS
Row sums of A059441.
KEYWORD
nonn
AUTHOR
Álvar Ibeas, Nov 16 2017
EXTENSIONS
a(16)-a(18) from Andrew Howroyd, Aug 28 2019
STATUS
approved
Number of regular hypergraphs spanning n vertices.
+10
20
1, 1, 3, 19, 879, 5280907, 1069418570520767
OFFSET
0,3
COMMENTS
We define a hypergraph to be any finite set of finite nonempty sets. A hypergraph is regular if all vertices have the same degree. The span of a hypergraph is the union of its edges.
EXAMPLE
The a(3) = 19 regular hypergraphs:
{{1,2,3}}
{{1},{2,3}}
{{2},{1,3}}
{{3},{1,2}}
{{1},{2},{3}}
{{1},{2,3},{1,2,3}}
{{2},{1,3},{1,2,3}}
{{3},{1,2},{1,2,3}}
{{1,2},{1,3},{2,3}}
{{1},{2},{3},{1,2,3}}
{{1},{2},{1,3},{2,3}}
{{1},{3},{1,2},{2,3}}
{{2},{3},{1,2},{1,3}}
{{1,2},{1,3},{2,3},{1,2,3}}
{{1},{2},{1,3},{2,3},{1,2,3}}
{{1},{3},{1,2},{2,3},{1,2,3}}
{{2},{3},{1,2},{1,3},{1,2,3}}
{{1},{2},{3},{1,2},{1,3},{2,3}}
{{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
MATHEMATICA
Table[Sum[SeriesCoefficient[Product[1+Times@@x/@s, {s, Subsets[Range[n], {1, n}]}], Sequence@@Table[{x[i], 0, k}, {i, n}]], {k, 1, 2^n}], {n, 5}]
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Dec 17 2018
EXTENSIONS
a(6) from Andrew Howroyd, Mar 12 2020
STATUS
approved
Square array T(m,n) giving the number of m X n (0,1)-matrices with pairwise distinct rows and pairwise distinct columns.
+10
18
2, 2, 2, 0, 10, 0, 0, 24, 24, 0, 0, 24, 264, 24, 0, 0, 0, 1608, 1608, 0, 0, 0, 0, 6720, 33864, 6720, 0, 0, 0, 0, 20160, 483840, 483840, 20160, 0, 0, 0, 0, 40320, 5644800, 19158720, 5644800, 40320, 0, 0, 0, 0, 40320, 57415680, 595506240, 595506240, 57415680, 40320
OFFSET
1,1
COMMENTS
Table starts
.2..2.....0...........0...............0..................0
.2.10....24..........24...............0..................0
.0.24...264........1608............6720..............20160
.0.24..1608.......33864..........483840............5644800
.0..0..6720......483840........19158720..........595506240
.0..0.20160.....5644800.......595506240........44680224960
.0..0.40320....57415680.....16388749440......2881362718080
.0..0.40320...518676480....418910083200....172145618789760
.0..0.....0..4151347200..10136835072000...9841604944066560
.0..0.....0.29059430400.233811422208000.546156941728204800
FORMULA
T(m,n) = Sum_{i=0..n} Sum_{j=0..m} stirling1(n,i) * stirling1(m,j) * 2^(i*j) = n! * Sum_{j=0..m} stirling1(m,j) * binomial(2^j,n) = m! * Sum_{i=0..n} stirling1(n,i) * binomial(2^i,m). - Max Alekseyev, Jun 18 2016
T(m,n) = A059084(m,n) * n!.
CROSSREFS
Cf. A088310 (diagonal), A181231, A181232, A181233 (subdiagonals).
Binary matrices with distinct rows and columns, various versions: A059202, A088309, A088310, A088616, A089673, A089674, A093466, A094000, A094223, A116532, A116539, A181230, A259763
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Oct 10 2010
STATUS
approved
Triangle T(n,m) of numbers of m-block T_0-covers of a labeled n-set, m = 0..2^n - 1.
+10
17
1, 0, 1, 0, 0, 3, 1, 0, 0, 3, 29, 35, 21, 7, 1, 0, 0, 0, 140, 1015, 2793, 4935, 6425, 6435, 5005, 3003, 1365, 455, 105, 15, 1, 0, 0, 0, 420, 13965, 126651, 661801, 2533135, 7792200, 20085000, 44307120, 84651840, 141113700, 206251500, 265182300
OFFSET
0,6
COMMENTS
A cover of a set is a T_0-cover if for every two distinct points of the set there exists a member (block) of the cover containing one but not the other point.
Also, T(n,m) is the number of n X m (0,1)-matrices with pairwise distinct nonzero columns and pairwise distinct nonzero rows, up to permutation of columns.
LINKS
Robert Israel, Table of n, a(n) for n = 0..4094 (rows 0 to 11, flattened).
FORMULA
T(n, m) = (1/m!)*Sum_{1..m + 1} stirling1(m + 1, i)*[2^(i - 1) - 1]_n, where [k]_n := k*(k - 1)*...*(k - n + 1), [k]_0 = 1.
E.g.f: Sum((1+x)^(2^n-1)*log(1+y)^n/n!, n=0..infinity)/(1+y). - Vladeta Jovovic, May 19 2004
Also T(n, m) = Sum_{i=0..n} Stirling1(n+1, i+1)*binomial(2^i-1, m). - Vladeta Jovovic, Jun 04 2004
T(n,m) = A181230(n,m)/m! - n*T(n-1,m) - T(n,m-1) - n*T(n-1,m-1). - Max Alekseyev, Dec 11 2017
EXAMPLE
[1],
[0,1],
[0,0,3,1],
[0,0,3,29,35,21,7,1],
...
There are 35 4-block T_0-covers of a labeled 3-set.
MAPLE
with(combinat): for n from 0 to 10 do for m from 0 to 2^n-1 do printf(`%d, `, (1/m!)*sum(stirling1(m+1, i)*product(2^(i-1)-1-j, j=0..n-1), i=1..m+1)) od: od:
MATHEMATICA
T[n_, m_] = Sum[ StirlingS1[n + 1, i + 1]*Binomial[2^i - 1, m], {i, 0, n}]; Table[T[n, m], {n, 0, 5}, {m, 0, 2^n - 1}] (* G. C. Greubel, Dec 28 2016 *)
CROSSREFS
Cf. A059201 (row sums), A059203 (column sums), A094000 (main diagonal).
Binary matrices with distinct rows and columns, various versions: A059202, A088309, A088310, A088616, A089673, A089674, A093466, A094000, A094223, A116532, A116539, A181230, A259763
KEYWORD
easy,nonn,tabf
AUTHOR
Vladeta Jovovic, Goran Kilibarda, Jan 18 2001
EXTENSIONS
More terms from James A. Sellers, Jan 24 2001
STATUS
approved
Number of n X n (0,1)-matrices with all rows distinct and all columns distinct.
+10
17
1, 2, 10, 264, 33864, 19158720, 44680224960, 413586858182400, 14960200449325582080, 2109063823453947981680640, 1162864344149083760773678387200, 2520991223487759548686737154649702400, 21598422878151131130336454273775859841843200, 734233037731110118818452425552296701963294284185600
OFFSET
0,2
LINKS
FORMULA
a(n) = n! * Sum_{k=0..n} Stirling1(n, k)*binomial(2^k, n). - Vladeta Jovovic, Nov 07 2003
a(n) = Sum_{i=0..n} Sum_{j=0..n} stirling1(n, i) * stirling1(n, j) * 2^(i*j). - Max Alekseyev, Nov 07 2003
a(n) ~ 2^(n^2). - Vaclav Kotesovec, Jul 02 2016
a(n) = A181230(n,n).
EXAMPLE
a(2) = 10: 00/01, 00/10, 01/00, 01/10, 01/11, 10/00, 10/01, 10/11, 11/01, 11/10.
MATHEMATICA
Table[n!*Sum[StirlingS1[n, k]*Binomial[2^k, n], {k, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, Jul 02 2016 *)
PROG
(Magma)
A088310:= func< n | Factorial(n)*(&+[Binomial(2^k, n)*StirlingFirst(n, k): k in [0..n]]) >;
[A088310(n): n in [0..30]]; // G. C. Greubel, Dec 14 2022
(SageMath)
@CachedFunction
def A088310(n): return (-1)^n*factorial(n)*sum((-1)^k*binomial(2^k, n)*stirling_number1(n, k) for k in (0..n))
[A088310(n) for n in range(31)] # G. C. Greubel, Dec 14 2022
CROSSREFS
Binary matrices with distinct rows and columns, various versions: A059202, A088309, A088310, A088616, A089673, A089674, A093466, A094000, A094223, A116532, A116539, A181230, A259763
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 07 2003
EXTENSIONS
Suggested by Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 06 2003
a(0)-a(5) from W. Edwin Clark, Nov 07 2003
STATUS
approved
Number of singular n X n rational {0,1}-matrices with no zero rows or columns and with all rows distinct, up to permutation of rows.
+10
17
0, 0, 3, 285, 50820, 23551920, 31898503077, 134251404794199
OFFSET
1,3
FORMULA
a(n) = A054780(n) - A088389(n).
CROSSREFS
Binary matrices with distinct rows and columns, various versions: A059202, A088309, A088310, A088616, A089673, A089674, A093466, A094000, A094223, A116532, A116539, A181230, A259763
KEYWORD
more,nonn
AUTHOR
Vladeta Jovovic, Apr 03 2006
STATUS
approved
Number of n X n (0,1)-matrices with no zero rows or columns and with all rows distinct and all columns distinct, up to permutation of rows.
+10
16
1, 1, 3, 29, 1015, 126651, 53354350, 74698954306, 350688201987402, 5624061753186933530, 314512139441575825493524, 62498777166571927258267336860, 44831219113504221199415663547412096
OFFSET
0,3
COMMENTS
Main diagonal of A059202.
REFERENCES
G. Kilibarda and V. Jovovic, "Enumeration of some classes of T_0-hypergraphs", in
LINKS
Goran Kilibarda and Vladeta Jovovic, Enumeration of some classes of T_0-hypergraphs, arXiv:1411.4187 [math.CO], 2014.
FORMULA
a(n) = Sum_{k=0..n+1} Stirling1(n+1, k)*binomial(2^(k-1)-1, n).
a(n) ~ binomial(2^n,n). - Vaclav Kotesovec, Mar 18 2014
MATHEMATICA
f[n_] := Sum[ StirlingS1[n + 1, k] Binomial[2^(k - 1) - 1, n], {k, 0, n + 1}]; Table[ f[n], {n, 0, 12}] (* Robert G. Wilson v, Jun 01 2004 *)
PROG
(PARI) a(n) = sum(k=0, n+1, stirling(n+1, k, 1)*binomial(2^(k-1)-1, n)); \\ Michel Marcus, Dec 17 2022
CROSSREFS
Binary matrices with distinct rows and columns, various versions: A059202, A088309, A088310, A088616, A089673, A089674, A093466, A094000, A094223, A116532, A116539, A181230, A259763
KEYWORD
nonn,easy
AUTHOR
Goran Kilibarda and Vladeta Jovovic, May 30 2004
EXTENSIONS
More terms from Robert G. Wilson v, Jun 01 2004
STATUS
approved
Number of equivalence classes of n X n (0,1)-matrices with all rows distinct and all columns distinct.
+10
15
1, 2, 5, 44, 1411, 159656, 62055868, 82060884560, 371036717493194, 5812014504668066528, 320454239459072905856944, 63156145369562679089674952768, 45090502574837184532027563736271152, 117910805393665959622047902193019284914432, 1139353529410754170844431642119963019965901238144
OFFSET
0,2
COMMENTS
Two such matrices are equivalent if they differ just by a permutation of the rows.
LINKS
G. Kilibarda and V. Jovovic, Enumeration of some classes of T_0-hypergraphs, arXiv:1411.4187 [math.CO], 2014.
FORMULA
a(n) = Sum_{k=0..n} Stirling1(n, k)*binomial(2^k, n). - Vladeta Jovovic, Nov 07 2003
a(n) = A088310(n) / n!.
EXAMPLE
a(2) = 5: 00/01, 00/10, 01/10, 01/11, 10/11.
MATHEMATICA
A088309[n_]:= A088309[n]=Sum[Binomial[2^j, n]*StirlingS1[n, j], {j, 0, n}];
Table[A088309[n], {n, 0, 30}] (* G. C. Greubel, Dec 15 2022 *)
PROG
(Magma)
A088309:= func< n | (&+[Binomial(2^k, n)*StirlingFirst(n, k): k in [0..n]]) >;
[A088309(n): n in [0..30]]; // G. C. Greubel, Dec 15 2022
(SageMath)
@CachedFunction
def A088309(n): return (-1)^n*sum((-1)^k*binomial(2^k, n)*stirling_number1(n, k) for k in (0..n))
[A088309(n) for n in range(31)] # G. C. Greubel, Dec 15 2022
(PARI) a(n) = sum(k=0, n, stirling(n, k, 1)*binomial(2^k, n)); \\ Michel Marcus, Dec 16 2022
CROSSREFS
Main diagonal of A059084.
Binary matrices with distinct rows and columns, various versions: A059202, this sequence, A088310, A088616, A089673, A089674, A093466, A094000, A094223, A116532, A116539, A181230, A259763.
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 07 2003
EXTENSIONS
Suggested by Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 06 2003
a(0)-a(5) from W. Edwin Clark, Nov 07 2003
STATUS
approved

Search completed in 0.021 seconds