Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a125061 -id:a125061
Displaying 1-8 of 8 results found. page 1
     Sort: relevance | references | number | modified | created      Format: long | short | data
A008438 Sum of divisors of 2*n + 1. +10
75
1, 4, 6, 8, 13, 12, 14, 24, 18, 20, 32, 24, 31, 40, 30, 32, 48, 48, 38, 56, 42, 44, 78, 48, 57, 72, 54, 72, 80, 60, 62, 104, 84, 68, 96, 72, 74, 124, 96, 80, 121, 84, 108, 120, 90, 112, 128, 120, 98, 156, 102, 104, 192, 108, 110, 152, 114, 144, 182, 144, 133, 168 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number of ways of writing n as the sum of 4 triangular numbers.
Bisection of A000203. - Omar E. Pol, Mar 14 2012
a(n) is also the total number of parts in all partitions of 2*n + 1 into equal parts. - Omar E. Pol, Feb 14 2021
REFERENCES
B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 139 Ex. (iii).
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 102.
L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 19 eq. (6), and p. 283 eq. (8).
W. Dunham, Euler: The Master of Us All, The Mathematical Association of America Inc., Washington, D.C., 1999, p. 12.
H. M. Farkas, I. Kra, Cosines and triangular numbers, Rev. Roumaine Math. Pures Appl., 46 (2001), 37-43.
N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 79, Eq. (32.31).
N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, 1984, see p. 184, Prop. 4, F(z).
G. Polya, Induction and Analogy in Mathematics, vol. 1 of Mathematics and Plausible Reasoning, Princeton Univ. Press, 1954, page 92 ff.
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 0..20000 (first 10000 terms from T. D. Noe)
H. Cohen, Sums involving the values at negative integers of L-functions of quadratic characters, Math. Ann. 217 (1975), no. 3, 271-285. MR0382192 (52 #3080)
M. D. Hirschhorn, The number of representations of a number by various forms, Discrete Mathematics 298 (2005), 205-211
Masao Koike, Modular forms on non-compact arithmetic triangle groups, Unpublished manuscript [Extensively annotated with OEIS A-numbers by N. J. A. Sloane, Feb 14 2021. I wrote 2005 on the first page but the internal evidence suggests 1997.]
K. Ono, S. Robins and P. T. Wahl, On the representation of integers as sums of triangular numbers, Aequationes mathematicae, August 1995, Volume 50, Issue 1-2, pp 73-94. Theorem 3 [Legendre].
H. Rosengren, Sums of triangular numbers from the Frobenius determinant, arXiv:math/0504272 [math.NT], 2005.
Min Wang and Zhi-Hong Sun, On the number of representations of n as a linear combination of four triangular numbers II, arXiv:1511.00478 [math.NT], 2015.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
K. S. Williams, The parents of Jacobi's four squares theorem are unique, Amer. Math. Monthly, 120 (2013), 329-345.
FORMULA
Expansion of q^(-1/2) * (eta(q^2)^2 / eta(q))^4 = psi(q)^4 in powers of q where psi() is a Ramanujan theta function. - Michael Somos, Apr 11 2004
Expansion of Jacobi theta_2(q)^4 / (16*q) in powers of q^2. - Michael Somos, Apr 11 2004
Euler transform of period 2 sequence [4, -4, 4, -4, ...]. - Michael Somos, Apr 11 2004
a(n) = b(2*n + 1) where b() is multiplicative and b(2^e) = 0^n, b(p^e) =(p^(e+1) - 1) / (p - 1) if p>2. - Michael Somos, Jul 07 2004
Given g.f. A(x), then B(q) = q * A(q^2) satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = v^3 + 8*w*v^2 + 16*w^2*v - u^2*w - Michael Somos, Apr 08 2005
Given g.f. A(x), then B(q) = q * A(q^2) satisfies 0 = f(B(q), B(q^3), B(q^9)) where f(u, v, w) = v^4 - 30*u*v^2*w + 12*u*v*w*(u + 9*w) - u*w*(u^2 + 9*w*u + 81*w^2).
Given g.f. A(x), then B(q) = q * A(q^2) satisfies 0 = f(B(q), B(q^2), B(q^3), B(q^6)) where f(u1, u2, u3, u6) = u2^3 + u1^2*u6 + 3*u2*u3^2 + 27*u6^3 - u1*u2*u3 - 3*u1*u3*u6 - 7*u2^2*u6 - 21*u2*u6^2. - Michael Somos, May 30 2005
G.f.: Sum_{k>=0} (2k + 1) * x^k / (1 - x^(2k + 1)).
G.f.: (Product_{k>0} (1 - x^k) * (1 + x^k)^2)^4. - Michael Somos, Apr 11 2004
G.f. Sum_{k>=0} a(k) * x^(2k + 1) = x( * Prod_{k>0} (1 - x^(4*k))^2 / (1 - x^(2k)))^ 4 = x * (Sum_{k>0} x^(k^2 - k))^4 = Sum_{k>0} k * (x^k / (1 - x^k) - 3 * x^(2*k) / (1 - x^(2*k)) +2 * x^(4*k) / (1 - x^(4*k))). - Michael Somos, Jul 07 2004
Number of solutions of 2*n + 1 = (x^2 + y^2 + z^2 + w^2) / 4 in positive odd integers. - Michael Somos, Apr 11 2004
8 * a(n) = A005879(n) = A000118(2*n + 1). 16 * a(n) = A129588(n). a(n) = A000593(2*n + 1) = A115607(2*n + 1).
a(n) = A000203(2*n+1). - Omar E. Pol, Mar 14 2012
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = (1/4) (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A096727. Michael Somos, Jun 12 2014
a(0) = 1, a(n) = (4/n)*Sum_{k=1..n} A002129(k)*a(n-k) for n > 0. - Seiichi Manyama, May 06 2017
G.f.: exp(Sum_{k>=1} 4*(x^k/k)/(1 + x^k)). - Ilya Gutkovskiy, Jul 31 2017
From Peter Bala, Jan 10 2021: (Start)
a(n) = A002131(2*n+1).
G.f.: Sum_{n >= 0} x^n*(1 + x^(2*n+1))/(1 - x^(2*n+1))^2. (End)
Sum_{k=1..n} a(k) ~ Pi^2 * n^2 / 8. - Vaclav Kotesovec, Aug 07 2022
Convolution of A125061 and A138741. - Michael Somos, Mar 04 2023
EXAMPLE
Divisors of 9 are 1,3,9, so a(4)=1+3+9=13.
F_2(z) = eta(4z)^8/eta(2z)^4 = q + 4q^3 + 6q^5 +8q^7 + 13q^9 + ...
G.f. = 1 + 4*x + 6*x^2 + 8*x^3 + 13*x^4 + 12*x^5 + 14*x^6 + 24*x^7 + 18*x^8 + 20*x^9 + ...
B(q) = q + 4*q^3 + 6*q^5 + 8*q^7 + 13*q^9 + 12*q^11 + 14*q^13 + 24*q^15 + 18*q^17 + ...
MAPLE
A008438 := proc(n) numtheory[sigma](2*n+1) ; end proc: # R. J. Mathar, Mar 23 2011
MATHEMATICA
DivisorSigma[1, 2 # + 1] & /@ Range[0, 61] (* Ant King, Dec 02 2010 *)
a[ n_] := SeriesCoefficient[ D[ Series[ Log[ QPochhammer[ -x] / QPochhammer[ x]], {x, 0, 2 n + 1}], x], {x, 0 , 2n}]; (* Michael Somos, Oct 15 2019 *)
PROG
(PARI) {a(n) = if( n<0, 0, sigma( 2*n + 1))};
(PARI) {a(n) = if( n<0, 0, n = 2*n; polcoeff( sum( k=1, (sqrtint( 4*n + 1) + 1)\2, x^(k^2 - k), x * O(x^n))^4, n))}; /* Michael Somos, Sep 17 2004 */
(PARI) {a(n) = my(A); if( n<0, 0, n = 2*n; A = x * O(x^n); polcoeff( (eta(x^4 + A)^2 / eta(x^2 + A))^4, n))}; /* Michael Somos, Sep 17 2004 */
(Sage) ModularForms( Gamma0(4), 2, prec=124).1; # Michael Somos, Jun 12 2014
(Magma) Basis( ModularForms( Gamma0(4), 2), 124) [2]; /* Michael Somos, Jun 12 2014 */
(Haskell)
a008438 = a000203 . a005408 -- Reinhard Zumkeller, Sep 22 2014
(Magma) [DivisorSigma(1, 2*n+1): n in [0..70]]; // Vincenzo Librandi, Aug 01 2017
CROSSREFS
Number of ways of writing n as a sum of k triangular numbers, for k=1,...: A010054, A008441, A008443, A008438, A008439, A008440, A226252, A007331, A226253, A226254, A226255, A014787, A014809.
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
Comments from Len Smiley, Enoch Haga
STATUS
approved
A002175 Excess of number of divisors of 12n+1 of form 4k+1 over those of form 4k+3.
(Formerly M0416 N0159)
+10
26
1, 2, 3, 2, 1, 2, 2, 4, 2, 2, 1, 0, 4, 2, 3, 2, 2, 4, 0, 2, 2, 0, 4, 2, 3, 0, 2, 6, 2, 2, 1, 2, 0, 2, 2, 2, 2, 4, 2, 0, 4, 4, 4, 0, 1, 2, 0, 4, 2, 0, 2, 2, 5, 2, 0, 2, 2, 4, 4, 2, 0, 2, 4, 2, 2, 0, 4, 0, 0, 2, 3, 2, 4, 2, 0, 4, 0, 6, 2, 4, 1, 0, 4, 2, 2, 2, 2, 0, 0, 2, 0, 2, 8, 2, 2, 0, 2, 4, 0, 4, 2, 2, 3, 2, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number of ways to write n as an ordered sum of 2 generalized pentagonal numbers. - Ilya Gutkovskiy, Aug 14 2017
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. W. L. Glaisher, On the square of Euler's series, Proc. London Math. Soc., 21 (1889), 182-194.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (phi(-x^3) / chi(-x))^2 in powers of x where phi(), chi() are Ramanujan theta functions.
Expansion of q^(-1/12) * (eta(q^2) * eta(q^3)^2 / (eta(q) * eta(q^6)))^2 in powers of q. - Michael Somos, Sep 19 2005
Euler transform of period 6 sequence [ 2, 0, -2, 0, 2, -2, ...]. - Michael Somos, Sep 19 2005
G.f. is a period 1 Fourier series which satisfies f(-1 / (72 t)) = 2 (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A258279. - Michael Somos, May 25 2015
From Michael Somos, Jun 02 2012: (Start)
a(n) = A008441(3*n) = A121363(3*n) = A122865(4*n) = A122856(8*n).
a(n) = A116604(6*n) = A125079(6*n) = A129447(6*n) = A138741(6*n).
a(n) = A(12*n+1) where A = A002654, A008442, A035154, A035181, A035184,
Contribution from Michael Somos, May 25 2015: (Start)
a(n) = A258277(4*n) = A258278(8*n) = A258291(3*n).
a(n) = - A258210(12*n + 1) = A258228(12*n + 1) = A258256(12*n + 1).
2*a(n) = A258279(12*n + 1) = - A258292(12*n + 1). (End)
G.f.: (Sum_{k=-inf..inf} x^(k*(3*k-1)/2))^2. - Ilya Gutkovskiy, Aug 14 2017
EXAMPLE
G.f. = 1 + 2*x + 3*x^2 + 2*x^3 + x^4 + 2*x^5 + 2*x^6 + 4*x^7 + 2*x^8 + 2*x^9 + ...
G.f. = q + 2*q^13 + 3*q^25 + 2*q^37 + q^49 + 2*q^61 + 2*q^73 + 4*q^85 + 2*q^97 + ...
MATHEMATICA
ed[n_]:=Module[{divs=Divisors[12n+1]}, Count[divs, _?(Mod[#, 4] == 1&)]- Count[divs, _?(Mod[#, 4]==3&)]]; Array[ed, 110, 0] (* Harvey P. Dale, Jul 01 2012 *)
a[ n_] := If[ n < 0, 0, With[ {m = 12 n + 1}, Sum[ KroneckerSymbol[ 4, d], {d, Divisors[m]}]]]; (* Michael Somos, Apr 23 2014 *)
a[ n_] := SeriesCoefficient[ (QPochhammer[ x^2] QPochhammer[ x^3]^2 / (QPochhammer[ x] QPochhammer[ x^6]))^2, {x, 0, n}]; (* Michael Somos, Apr 23 2014 *)
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 4, 0, x^3] / QPochhammer[ x, x^2])^2, {x, 0, n}]; (* Michael Somos, May 25 2015 *)
PROG
(PARI) {a(n) = if( n<0, 0, n = 12*n + 1; sumdiv( n, d, (d%4==1) - (d%4==3)))}; /* Michael Somos, Sep 19 2005 */
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^3 + A)^2 / (eta(x + A) * eta(x^6 + A)))^2, n))}; /* Michael Somos, Jun 02 2012 */
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved
A122857 Expansion of (phi(q)^2 + phi(q^3)^2) / 2 in powers of q where phi() is a Ramanujan theta function. +10
7
1, 2, 2, 2, 2, 4, 2, 0, 2, 2, 4, 0, 2, 4, 0, 4, 2, 4, 2, 0, 4, 0, 0, 0, 2, 6, 4, 2, 0, 4, 4, 0, 2, 0, 4, 0, 2, 4, 0, 4, 4, 4, 0, 0, 0, 4, 0, 0, 2, 2, 6, 4, 4, 4, 2, 0, 0, 0, 4, 0, 4, 4, 0, 0, 2, 8, 0, 0, 4, 0, 0, 0, 2, 4, 4, 6, 0, 0, 4, 0, 4, 2, 4, 0, 0, 8, 0, 4, 0, 4, 4, 0, 0, 0, 0, 0, 2, 4, 2, 0, 6, 4, 4, 0, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
REFERENCES
B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 197, Entry 44.
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
Expansion of eta(q^2)^3 * eta(q^3)^2 * eta(q^6) / (eta(q)^2 * eta(q^4)* eta(q^12)) in powers of q.
Expansion of 2 * psi(q) * psi(q^2) * psi(q^3) / psi(q^6) - phi(q^3)^2 in powers of q. - Michael Somos, Jul 09 2013
Euler transform of period 12 sequence [ 2, -1, 0, 0, 2, -4, 2, 0, 0, -1, 2, -2, ...].
Moebius transform is period 12 sequence [ 2, 0, 0, 0, 2, 0, -2, 0, 0, 0, -2, 0, ...].
a(12*n + 7) = a(12*n + 11) = 0.
a(n) = 2 * b(n) where b(n) is multiplicative and b(2^e) = b(3^e) = 1, b(p^e) = e+1 if p == 1, 5 (mod 12), a(p^e) == (1-(-1)^e)/2 if p == 7, 11 (mod 12).
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 4 (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A125061.
A035154(n) = a(n) / 2 if n > 0. A008441(n) = a(4*n + 1) / 2. A125079(n) = a(2*n + 1) / 2. A113446(3*n + 1) = A002654(3*n + 1) = a(3*n + 1) / 2.
a(n) = (-1)^n * A132003(n). Expansion of (phi(-q^3) / phi(-q)) * phi(-q^2) * phi(-q^6) in powers of q where phi() is a Ramanujan theta function. - Michael Somos, Mar 05 2023
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*Pi/3 = 2.0943951... (A019693). - Amiram Eldar, Nov 21 2023
EXAMPLE
G.f. = 1 + 2*q + 2*q^2 + 2*q^3 + 2*q^4 + 4*q^5 + 2*q^6 + 2*q^8 + 2*q^9 + 4*q^10 + ...
MATHEMATICA
a[ n_] := If[ n < 1, Boole[n == 0], 2 DivisorSum[ n, KroneckerSymbol[ -36, #] &]]; (* Michael Somos, Jul 09 2013 *)
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q]^2 + EllipticTheta[ 3, 0, q^3]^2) / 2, {q, 0, n}]; (* Michael Somos, Jul 09 2013 *)
PROG
(PARI) {a(n) = if( n<1, n==0, 2 * sumdiv( n, d, kronecker( -36, d)))};
(PARI) {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); 2 * prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p<5, 1, p%12<6, e+1, !(e%2) )))};
(PARI) {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); prod( k=1, matsize(A)[1],
[p, e] = A[k, ]; if( p==2, 1, p==3, 1+e%2*2, p%4==1, e+1, !(e%2) )))};
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Sep 14 2006
STATUS
approved
A163746 Expansion of (theta_3(q)^2 + 3 * theta_3(q^3)^2) / 4 - 1 in powers of q. +10
7
1, 1, 3, 1, 2, 3, 0, 1, 1, 2, 0, 3, 2, 0, 6, 1, 2, 1, 0, 2, 0, 0, 0, 3, 3, 2, 3, 0, 2, 6, 0, 1, 0, 2, 0, 1, 2, 0, 6, 2, 2, 0, 0, 0, 2, 0, 0, 3, 1, 3, 6, 2, 2, 3, 0, 0, 0, 2, 0, 6, 2, 0, 0, 1, 4, 0, 0, 2, 0, 0, 0, 1, 2, 2, 9, 0, 0, 6, 0, 2, 1, 2, 0, 0, 4, 0, 6, 0, 2, 2, 0, 0, 0, 0, 0, 3, 2, 1, 0, 3, 2, 6, 0, 2, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
REFERENCES
Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 82, Eq. (32.53).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
Expansion of psi(q) * psi(q^2) * chi(q^3) * chi(-q^6) - 1 in powers of q where psi(), chi() are Ramanujan theta functions.
Expansion of eta(q^2) * eta(q^4)^2 * eta(q^6)^3 / (eta(q) * eta(q^3) * eta(q^12)^2) - 1 in powers of q.
Moebius transform is period 12 sequence [ 1, 0, 2, 0, 1, 0, -1, 0, -2, 0, -1, 0, ...].
a(n) is multiplicative with a(2^e) = 1, a(3^e) = 2-(-1)^e, a(p^e) = e+1 if p == 1 (mod 4), a(p^e) == (1+(-1)^e)/2 if p == 3 (mod 4). [corrected by Amiram Eldar, Nov 14 2023]
G.f.: Sum_{k>0} (x^k + x^(3*k)) / (1 - x^(2*k) + x^(4*k)).
a(n) = A125061(n) unless n=0. a(12*n + 7) = a(12*n + 11) = 0.
a(2*n) = a(n). a(2*n + 1) = A138741(n). a(3*n + 1) = A122865(n). a(3*n + 2) = A122856(n). - Michael Somos, Sep 02 2015
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/2 (A019669). - Amiram Eldar, Nov 14 2023
EXAMPLE
G.f. = q + q^2 + 3*q^3 + q^4 + 2*q^5 + 3*q^6 + q^8 + q^9 + 2*q^10 + 3*q^12 + ...
MATHEMATICA
a[ n_] := If[ n < 1, 0, DivisorSum[ n, (-1)^Quotient[#, 6] {1, 0, 2, 0, 1, 0}[[Mod[#, 6, 1]]] &]]; (* Michael Somos, Sep 02 2015 *)
a[ n_] := If[ n < 1, 0, Times @@ (Which[# < 3, 1, # == 3, Mod[#2, 2] 2 + 1, Mod[#, 4] == 1, #2 + 1, True, (1 + (-1)^#2) / 2] & @@@ FactorInteger @ n)]; (* Michael Somos, Sep 02 2015 *)
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q]^2 + 3 EllipticTheta[ 3, 0, q^3]^2) / 4 - 1, {q, 0, n}]; (* Michael Somos, Sep 02 2015 *)
PROG
(PARI) {a(n) = if( n<1, 0, sumdiv(n, d, ((d%2) * ((d%3==0) + 1)) * (-1)^(d\6)))};
(PARI) {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if(p==2, 1, p==3, e%2*2 + 1, p%4==1, e+1, 1-e%2)))};
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^4 + A)^2 * eta(x^6 + A)^3 / (eta(x + A) * eta(x^3 + A) * eta(x^12 + A)^2) - 1, n))};
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Michael Somos, Aug 03 2009
STATUS
approved
A281451 Expansion of x * f(x, x) * f(x, x^17) in powers of x where f(, ) is Ramanujan's general theta function. +10
6
1, 3, 2, 0, 2, 2, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 2, 3, 2, 0, 1, 4, 0, 0, 2, 2, 4, 0, 0, 2, 0, 0, 0, 2, 0, 0, 4, 2, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 2, 2, 0, 1, 4, 0, 0, 4, 1, 2, 0, 0, 4, 0, 0, 2, 2, 4, 0, 2, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 4, 4, 0, 2, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
f(x,x^m) = 1 + Sum_{k>=1} x^((m+1)*k*(k-1)/2) (x^k + x^(m*k)). - N. J. A. Sloane, Jan 30 2017
Euler transform of a period 36 sequence.
G.f.: x * (Sum_{k in Z} x^k^2) * (Sum_{k in Z} x^(9*k^2 + 8*k)).
G.f.: x * Product_{k>0} (1 + x^(2*k-1))^2 * (1 - x^(2*k)) * (1 + x^(18*k-17)) * (1 + x^(18*k-1)) * (1 - x^(18*k)).
a(4*n) = a(8*n + 7) = a(16*n + 13) = a(32*n + 9) = a(49*n + 7) = a(98*n + 14) = 0.
a(4*n + 1) = A281452(n). a(8*n + 3) = 2 * A281491(n). A(16*n + 1) = A281453(n).
a(32*n + 25) = 2 * A281490(n). a(64*n + 49) = a(n). a(128*n + 17) = 2 * A281492(n).
a(n) = A122865(3*n + 2). a(n) = A122856(6*n + 4) = A258278(6*n + 4).
2 * a(n) = b(9*n + 7) where b = A105673, A122857, A258034, A259761. -2 * a(n) = b(9*n + 7) where b = A138949, A256280, A258292.
a(n) = - A256269(9*n + 7). 4 * a(n) = A004018(9*n + 7).
EXAMPLE
G.f. = x + 3*x^2 + 2*x^3 + 2*x^5 + 2*x^6 + 2*x^10 + 2*x^11 + 2*x^17 + ...
G.f. = q^16 + 3*q^25 + 2*q^34 + 2*q^52 + 2*q^61 + 2*q^97 + 2*q^106 + ...
MATHEMATICA
a[ n_] := If[ n < 0, 0, DivisorSum[ 9 n + 7, KroneckerSymbol[ -4, #] &]];
a[ n_] := If[ n < 0, 0, Times @@ (Which[# < 3, 1, Mod[#, 4] == 1, #2 + 1, True, (1 + (-1)^#2) / 2] & @@@ FactorInteger[ 9 n + 7])];
a[ n_] := SeriesCoefficient[ x EllipticTheta[ 3, 0, x] QPochhammer[ -x, x^18] QPochhammer[ -x^17, x^18] QPochhammer[ x^18], {x, 0, n}];
PROG
(PARI) {a(n) = if( n<0, 0, sumdiv(9*n + 7, d, (d%4==1) - (d%4==3)))};
(PARI) {a(n) = if( n<0, 0, my(A, p, e); A = factor(9*n + 7); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if(p==2, 1, p%4==1, e+1, 1-e%2)))};
(PARI) {a(n) = if( n<0, 0, my(m = 9*n + 7, k, s); forstep(j=0, sqrtint(m), 3, if( issquare(m - j^2, &k) && (k%9 == 4 || k%9 == 5), s+=(j>0)+1)); s)};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Jan 23 2017
STATUS
approved
A138745 Expansion of eta(q) * eta(q^3) * eta(q^4)^3 / (eta(q^2)^2 * eta(q^12)) in powers of q. +10
4
1, -1, 1, -3, 1, -2, 3, 0, 1, -1, 2, 0, 3, -2, 0, -6, 1, -2, 1, 0, 2, 0, 0, 0, 3, -3, 2, -3, 0, -2, 6, 0, 1, 0, 2, 0, 1, -2, 0, -6, 2, -2, 0, 0, 0, -2, 0, 0, 3, -1, 3, -6, 2, -2, 3, 0, 0, 0, 2, 0, 6, -2, 0, 0, 1, -4, 0, 0, 2, 0, 0, 0, 1, -2, 2, -9, 0, 0, 6, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (theta_4(q)^2 + 3 * theta_4(q^3)^2) / 4 in powers of q.
Expansion of psi(-q) * psi(q^2) * chi(-q^3) * chi(-q^6) in powers of q where psi(), chi() are Ramanujan theta functions.
Euler transform of period 12 sequence [ -1, 1, -2, -2, -1, 0, -1, -2, -2, 1, -1, -2, ...].
Moebius transform is period 24 sequence [ -1, 2, -2, 0, -1, 4, 1, 0, 2, 2, 1, 0, -1, -2, -2, 0, -1, -4, 1, 0, 2, -2, 1, 0, ...].
a(n) = -b(n) where b() is multiplicative with b(2^e) = -1 if e>0, b(3^e) = 2 - (-1)^e, b(p^e) = e+1 if p == 1, 5 (mod 12), b(p^e) = (1 + (-1)^e) / 2 if p == 7, 11 (mod 12).
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 6 (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A125079.
G.f.: 1 + Sum_{k>0} (-1)^k * ( f(6*k - 1) + 2 * f(6*k - 3) + f(6*k - 5) ) where f(k) := x^k / (1 + x^k).
a(12*n + 7) = a(12*n + 11) = 0.
a(n) = - A138746(n) unless n=0. a(n) = (-1)^n * A125061(n).
a(2*n) = A125061(n). a(2*n + 1) = - A138741(n).
EXAMPLE
G.f. = 1 - q + q^2 - 3*q^3 + q^4 - 2*q^5 + 3*q^6 + q^8 - q^9 + 2*q^10 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 4, 0, q]^2 + 3 EllipticTheta[ 4, 0, q^3]^2) / 4, {q, 0, n}]; (* Michael Somos, Sep 08 2015 *)
a[ n_] := If[ n < 1, Boole[n == 0], (-1)^n DivisorSum[ n, (-1)^Quotient[#, 6] {1, 0, 2, 0, 1, 0}[[Mod[#, 6, 1]]] &]]; (* Michael Somos, Sep 08 2015 *)
a[ n_] := If[ n < 1, Boole[n == 0], - Times @@ (Which[ # < 3, -(-1)^#, # == 3, Mod[#2, 2] 2 + 1, Mod[#, 4] == 1, #2 + 1, True, 1 - Mod[#2, 2]] & @@@ FactorInteger@n)]; (* Michael Somos, Sep 08 2015 *)
QP = QPochhammer; s = QP[q]*QP[q^3]*(QP[q^4]^3/(QP[q^2]^2*QP[q^12])) + O[q]^100; CoefficientList[s, q] (* Jean-François Alcover, Nov 27 2015 *)
PROG
(PARI) {a(n) = if( n<1, n==0, (-1)^n * sumdiv(n, d, ((d%2) * ((d%3==0) + 1)) * (-1)^(d\6)))};
(PARI) {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); - prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, -1, p==3, 2 - (-1)^e, p%12<6, e+1, 1-e%2 )))};
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^3 + A) * eta(x^4 + A)^3 / (eta(x^2 + A)^2 * eta(x^12 + A)), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Mar 27 2008
STATUS
approved
A281452 Expansion of f(x, x) * f(x^5, x^13) in powers of x where f(, ) is Ramanujan's general theta function. +10
3
1, 2, 0, 0, 2, 1, 2, 0, 0, 4, 0, 0, 0, 1, 4, 0, 2, 2, 0, 0, 0, 2, 2, 0, 0, 2, 0, 0, 1, 4, 2, 0, 2, 0, 0, 0, 2, 2, 2, 0, 0, 2, 0, 0, 3, 2, 0, 0, 2, 4, 0, 0, 0, 4, 2, 0, 0, 0, 0, 0, 2, 0, 2, 0, 4, 0, 0, 0, 0, 5, 2, 0, 0, 2, 0, 0, 0, 4, 2, 0, 2, 2, 0, 0, 0, 2, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
f(a,b) = 1 + Sum_{k=1..oo} (ab)^(k(k-1)/2)*(a^k+b^k). - N. J. A. Sloane, Jan 30 2017
Euler transform of a period 36 sequence.
G.f.: (Sum_{k in Z} x^k^2) * (Sum_{k in Z} x^(9*k^2 + 4*k)).
G.f.: Product_{k>0} (1 + x^(2*k-1))^2 * (1 - x^(2*k)) * (1 - x^(18*k-13)) * (1 - x^(18*k-5)) * (1 - x^(18*k)).
a(n) = A122865(3*n + 1) = A122856(6*n + 2) = A258278(6*n + 2). a(n) = - A256269(9^n + 4). 4 * a(n) = A004018(9*n + 4).
2 * a(n) = b(9*n + 4) = with b = A105673, A105673, A122857, A258034, A259761. -2 * a(n) = b(9*n + 4) with b = A138949, A256280, A258292.
a(4*n) = A281453(n). a(8*n + 6) = 2 * A281490(n). a(16*n + 12) = A281451(n).
a(32*n + 4) = 2 * A281492(n). a(64*n + 28) = A281452(n). a(128*n + 60) = 2 * A281491(n).
EXAMPLE
G.f. = 1 + 2*x + 2*x^4 + x^5 + 2*x^6 + 4*x^9 + x^13 + 4*x^14 + 2*x^16 + ...
G.f. = q^4 + 2*q^13 + 2*q^40 + q^49 + 2*q^58 + 4*q^85 + q^121 + 4*q^130 + ...
MATHEMATICA
a[ n_] := If[ n < 0, 0, DivisorSum[ 9 n + 4, KroneckerSymbol[ -4, #] &]];
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] QPochhammer[ -x^5, x^18] QPochhammer[ -x^13, x^18] QPochhammer[ x^18], {x, 0, n}];
a[ n_] := If[ n < 0, 0, Times @@ (Which[ # < 3, 1, Mod[#, 4] == 1, #2 + 1, True, (1 + (-1)^#2) / 2] & @@@ FactorInteger[ 9 n + 4])];
PROG
(PARI) {a(n) = if( n<0, 0, sumdiv(9*n + 4, d, (d%4==1) - (d%4==3)))};
(PARI) {a(n) = if( n<0, 0, my(m = 9*n + 4, k, s); forstep(j=0, sqrtint(m), 3, if( issquare(m - j^2, &k) && (k%9 == 2 || k%9 == 7), s+=(j>0)+1)); s)};
(PARI) {a(n) = if( n<0, 0, my(A, p, e); A = factor(9*n + 4); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if(p==2, 1, p%4==1, e+1, 1-e%2)))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Jan 26 2017
STATUS
approved
A281453 Expansion of f(x, x) * f(x^7, x^11) in powers of x where f(, ) is Ramanujan's general theta function. +10
3
1, 2, 0, 0, 2, 0, 0, 1, 2, 2, 0, 3, 2, 0, 0, 2, 4, 0, 0, 0, 2, 0, 0, 2, 0, 2, 0, 2, 0, 0, 0, 0, 3, 2, 0, 0, 6, 0, 0, 0, 1, 4, 0, 2, 2, 0, 0, 2, 2, 4, 0, 0, 0, 0, 0, 0, 4, 2, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 2, 0, 0, 2, 0, 0, 0, 3, 4, 0, 0, 2, 0, 4, 0, 0, 2, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
f(a,b) = 1 + Sum_{k=1..oo} (ab)^(k(k-1)/2)*(a^k+b^k). - N. J. A. Sloane, Jan 30 2017
Euler transform of a period 36 sequence.
G.f.: (Sum_{k in Z} x^k^2) * (Sum_{k in Z} x^(9*k^2 + 2*k)).
G.f.: Product_{k>0} (1 + x^(2*k-1))^2 * (1 - x^(2*k)) * (1 + x^(18*k-11)) * (1 + x^(18*k-7)) * (1 - x^(18*k)).
a(4*n + 2) = a(8*n + 5) = a(16*n + 3) = a(32*n + 31) = a(64*n + 55) = a(128*n + 39) = 0.
a(4*n + 3) = A281451(n). a(8*n + 1) = 2 * A281492(n). a(16*n + 7) = A281452(n). a(32*n + 15) = 2 * A281491(n). a(128*n + 103) = 2 * A281490(n).
a(n) = A122865(3*n) = A122856(6*n) = A258278(6*n) = a(64*n + 7). a(n) = -A256269(9*n + 1).
2 * a(n) = b(9*n + 1) where b = A105673, A122857, A258034, A259761. 2 * a(n) = - b(9*n+1) where b = A138949, A256280, A258292. 4 * a(n) = A004018(9*n + 1).
Convolution of A000122 and A205808.
EXAMPLE
G.f. = 1 + 2*x + 2*x^4 + x^7 + 2*x^8 + 2*x^9 + 3*x^11 + 2*x^12 + ...
G.f. = q + 2*q^10 + 2*q^37 + q^64 + 2*q^73 + 2*q^82 + 3*q^100 + ...
MATHEMATICA
a[ n_] := If[ n < 0, 0, DivisorSum[ 9 n + 1, KroneckerSymbol[ -4, #] &]];
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] QPochhammer[ -x^7, x^18] QPochhammer[ -x^11, x^18] QPochhammer[ x^18], {x, 0, n}];
a[ n_] := If[ n < 0, 0, Times @@ (Which[# < 3, 1, # == 3, Mod[#2, 2] 2 + 1, Mod[#, 4] == 1, #2 + 1, True, (1 + (-1)^#2) / 2] & @@@ FactorInteger[ 9 n + 1])];
PROG
(PARI) {a(n) = if( n<0, 0, sumdiv(9*n + 1, d, kronecker(-4, d)))};
(PARI) {a(n) = if( n<0, 0, my(m = 9*n + 1, k, s); forstep(j=0, sqrtint(m), 3, if( issquare(m - j^2, &k) && (k%9 == 1 || k%9 == 8), s+=(j>0)+1)); s)};
(PARI) {a(n) = if( n<0, 0, my(A, p, e); A = factor(9*n + 1); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if(p==2, 1, p==3, -2*(-1)^e, p%4==1, e+1, 1-e%2)))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Jan 26 2017
STATUS
approved
page 1

Search completed in 0.012 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 18 20:50 EDT 2024. Contains 375284 sequences. (Running on oeis4.)