Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a130243 -id:a130243
     Sort: relevance | references | number | modified | created      Format: long | short | data
Maximal index k of a Lucas number such that Lucas(k) <= n (the 'lower' Lucas (A000032) Inverse).
+10
25
1, 1, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
OFFSET
1,3
COMMENTS
Inverse of the Lucas sequence (A000032), nearly, since a(Lucas(n))=n for n>=1 (see A130242 and A130247 for other versions). For n>=2, a(n)+1 is equal to the partial sum of the Lucas indicator sequence (see A102460). Identical to A130247 except for n=2.
LINKS
FORMULA
a(n) = floor(log_phi((n+sqrt(n^2+4))/2)) = floor(arcsinh((n+1)/2)/log(phi)) where phi=(1+sqrt(5))/2.
a(n) = A130242(n+1) - 1 for n>=2.
a(n) = A130247(n) except for n=2.
G.f.: g(x) = 1/(1-x) * Sum{k>=1, x^Lucas(k)}.
a(n) = floor(log_phi(n+1/2)) for n>=2, where phi is the golden ratio.
EXAMPLE
a(10)=4, since Lucas(4)=7<=10 but Lucas(5)=11>10.
MATHEMATICA
Join[{1}, Table[Floor[Log[GoldenRatio, n + 1/2]], {n, 2, 50}]] (* G. C. Greubel, Dec 24 2017 *)
PROG
(PARI) for(n=1, 50, print1(floor(log((2*n+1)/2)/log((1+sqrt(5))/2)), ", ")) \\ G. C. Greubel, Sep 09 2018
(Magma) [Floor(Log((2*n+1)/2)/Log((1+Sqrt(5))/2)): n in [2..50]]; // G. C. Greubel, Sep 09 2018
(Python)
from itertools import count, islice
def A130241_gen(): # generator of terms
a, b = 1, 3
for i in count(1):
yield from (i, )*(b-a)
a, b = b, a+b
A130241_list = list(islice(A130241_gen(), 40)) # Chai Wah Wu, Jun 08 2022
CROSSREFS
For partial sums see A130243. Other related sequences: A000032, A130242, A130245, A130247, A130249, A130255, A130259. Indicator sequence A102460. Fibonacci inverse see A130233 - A130240, A104162.
KEYWORD
nonn
AUTHOR
Hieronymus Fischer, May 19 2007, Jul 02 2007
STATUS
approved
Partial sums of the Lucas Inverse A130247.
+10
20
1, 1, 3, 6, 9, 12, 16, 20, 24, 28, 33, 38, 43, 48, 53, 58, 63, 69, 75, 81, 87, 93, 99, 105, 111, 117, 123, 129, 136, 143, 150, 157, 164, 171, 178, 185, 192, 199, 206, 213, 220, 227, 234, 241, 248, 255, 263, 271, 279, 287, 295, 303, 311, 319, 327, 335, 343, 351
OFFSET
1,3
LINKS
FORMULA
a(n)=sum{1<=k<=n, A130247(k)}=2+(n+1)*A130247(n)-A000032(A130247(n)+2) for n>=3. G.f.: g(x)=1/(1-x)^2*(sum{k>=1, x^Lucas(k)}-x^2).
MATHEMATICA
Join[{1, 1}, Table[Sum[Floor[Log[GoldenRatio, k + 1/2]], {k, 1, n}], {n, 3, 50}]] (* G. C. Greubel, Dec 24 2017 *)
CROSSREFS
Other related sequences: A000032, A130241, A130242, A130243, A130244, A130245, A130246, A130251, A130252, A130257, A130261. Fibonacci inverse see A130233 - A130240, A104162.
KEYWORD
nonn
AUTHOR
Hieronymus Fischer, May 19 2007
STATUS
approved
Partial sums of the 'lower' Fibonacci Inverse A130233.
+10
14
0, 2, 5, 9, 13, 18, 23, 28, 34, 40, 46, 52, 58, 65, 72, 79, 86, 93, 100, 107, 114, 122, 130, 138, 146, 154, 162, 170, 178, 186, 194, 202, 210, 218, 227, 236, 245, 254, 263, 272, 281, 290, 299, 308, 317, 326, 335, 344, 353, 362, 371, 380, 389, 398, 407, 417, 427
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} A130233(k) = (n+1)*A130233(n) - Fib(A130233(n)+2) + 1.
G.f.: 1/(1-x)^2 * Sum_{k>=1} x^Fib(k). [corrected by Joerg Arndt, Apr 14 2020]
MATHEMATICA
nmax = 90; CoefficientList[Series[Sum[x^Fibonacci[k], {k, 1, 1 + Log[3/2 + Sqrt[5]*nmax]/Log[GoldenRatio]}]/(1-x)^2, {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 14 2020 *)
PROG
(Magma)
m:=120;
f:= func< x | (&+[x^Fibonacci(j): j in [1..Floor(3*Log(3*m+1))]])/(1-x)^2 >;
R<x>:=PowerSeriesRing(Rationals(), m+1);
[0] cat Coefficients(R!( f(x) )); // G. C. Greubel, Mar 17 2023
(SageMath)
m=120
def f(x): return sum( x^fibonacci(j) for j in range(1, int(3*log(3*m+1))))/(1-x)^2
def A130235_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( f(x) ).list()
A130235_list(m) # G. C. Greubel, Mar 17 2023
KEYWORD
nonn
AUTHOR
Hieronymus Fischer, May 17 2007
STATUS
approved
Partial sums of A130239.
+10
14
0, 2, 4, 6, 9, 12, 15, 18, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 215, 220, 225, 230, 235, 240, 245, 250, 255, 260
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} A130239(k).
a(n) = (n+1)*A130233(sqrt(n)) - Fib(A130233(sqrt(n)) + 1) * Fib(A130232(sqrt(n))).
G.f.: (1/(1-x)^2) * Sum_{k>=1} x^(Fib(k)^2).
MATHEMATICA
A130233[n_]:= Floor[Log[GoldenRatio, 3/2 + n*Sqrt[5]]];
A130240[n_]:= A130240[n]= Sum[A130233[Floor[Sqrt[j]]], {j, 0, n}];
Table[A130240[n], {n, 0, 70}] (* G. C. Greubel, Mar 18 2023 *)
PROG
(Magma)
A130233:= func< n | Floor(Log(3/2 + n*Sqrt(5))/Log((1+Sqrt(5))/2)) >;
A130240:= func< n | (&+[A130233(Floor(Sqrt(j))): j in [0..n]]) >;
[A130240(n): n in [0..70]]; // G. C. Greubel, Mar 18 2023
(SageMath)
def A130233(n): return int(log(3/2 +n*sqrt(5), golden_ratio))
def A130240(n): return sum( A130233(floor(sqrt(j))) for j in range(n+1) )
[A130240(n) for n in range(71)] # G. C. Greubel, Mar 18 2023
KEYWORD
nonn
AUTHOR
Hieronymus Fischer, May 17 2007
STATUS
approved
Partial sums of A130245.
+10
11
0, 1, 3, 6, 10, 14, 18, 23, 28, 33, 38, 44, 50, 56, 62, 68, 74, 80, 87, 94, 101, 108, 115, 122, 129, 136, 143, 150, 157, 165, 173, 181, 189, 197, 205, 213, 221, 229, 237, 245, 253, 261, 269, 277, 285, 293, 301, 310, 319, 328, 337, 346, 355, 364, 373, 382, 391
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=1..n} A130245(k).
a(n) = 1 +(n+1)*A130245(n) - A000032(A130245(n)+1) for n=0 or n >= 2.
G.f.: 1/(1-x)^2*Sum_{k>=0} x^A000032(k).
MATHEMATICA
Table[Sum[1 + Floor[Log[GoldenRatio, (2*k + 1)/2]], {k, 1, n}], {n, 0, 100}] (* G. C. Greubel, Sep 09 2018 *)
PROG
(PARI) for(n=0, 100, print1(sum(k=1, n, 1 + floor(log((2*k+1)/2)/log((1+sqrt(5))/2))), ", ")) \\ G. C. Greubel, Sep 09 2018
(Magma) [0] cat [(&+[1+Floor(Log((2*k+1)/2)/Log((1+Sqrt(5))/2)): k in [1..n]]): n in [1..100]]; // G. C. Greubel, Sep 09 2018
CROSSREFS
Other related sequences: A000032, A130241, A130243, A130244, A130248, A130251, A130252, A130255, A130257, A130261. Fibonacci inverse see A130233 - A130240, A104162.
KEYWORD
nonn
AUTHOR
Hieronymus Fischer, May 19 2007
STATUS
approved
The 'lower' Fibonacci Inverse A130233(n) multiplied by n.
+10
9
0, 2, 6, 12, 16, 25, 30, 35, 48, 54, 60, 66, 72, 91, 98, 105, 112, 119, 126, 133, 140, 168, 176, 184, 192, 200, 208, 216, 224, 232, 240, 248, 256, 264, 306, 315, 324, 333, 342, 351, 360, 369, 378, 387, 396, 405, 414, 423, 432, 441, 450, 459, 468, 477, 486, 550
OFFSET
0,2
LINKS
FORMULA
a(n) = n*A130233(n).
a(n) = n*floor(arcsinh(sqrt(5)*n/2)/log(phi)).
G.f.: (1/(1-x))*Sum_{k>=1} (Fib(k) + x/(1-x))*x^Fib(k).
MATHEMATICA
Table[n*Floor[Log[GoldenRatio, 3/2 +n*Sqrt[5]]], {n, 0, 70}] (* G. C. Greubel, Mar 18 2023 *)
PROG
(Magma) [n*Floor(Log(3/2 +n*Sqrt(5))/Log((1+Sqrt(5))/2)): n in [0..70]]; // G. C. Greubel, Mar 18 2023
(SageMath) [n*int(log(3/2 +n*sqrt(5), golden_ratio)) for n in range(71)] # G. C. Greubel, Mar 18 2023
KEYWORD
nonn
AUTHOR
Hieronymus Fischer, May 17 2007
STATUS
approved
Maximal index k of the square of a Fibonacci number such that Fib(k)^2 <= n (the 'lower' squared Fibonacci Inverse).
+10
9
0, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
OFFSET
0,2
LINKS
FORMULA
a(n) = max(k | Fib(k)^2 <= n) = A130233(floor(sqrt(n))).
a(n) = floor(arcsinh(sqrt(5n)/2)/log(phi)), where phi=(1+sqrt(5))/2.
G.f.: (1/(1-x))*Sum_{k>=1} x^(Fib(k)^2).
EXAMPLE
a(10) = 4 since Fib(4)^2 = 9 <= 10 but Fib(5)^2 = 25 > 10.
MATHEMATICA
A130233[n_]:= Floor[Log[GoldenRatio, 3/2 +n*Sqrt[5]]];
Table[A130233[Floor[Sqrt[n]]], {n, 0, 120}] (* G. C. Greubel, Mar 18 2023 *)
PROG
(Magma)
A130233:= func< n | Floor(Log(3/2 + n*Sqrt(5))/Log((1+Sqrt(5))/2)) >;
[A130233(Floor(Sqrt(n))): n in [0..120]]; // G. C. Greubel, Mar 18 2023
(SageMath)
def A130233(n): return int(log(3/2 +n*sqrt(5), golden_ratio))
def A130239(n): return A130233(floor(sqrt(n)))
[A130239(n) for n in range(121)] # G. C. Greubel, Mar 18 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Hieronymus Fischer, May 17 2007, May 28 2007
STATUS
approved
Partial sums of the 'upper' Lucas Inverse A130242.
+10
9
0, 0, 0, 2, 5, 9, 13, 17, 22, 27, 32, 37, 43, 49, 55, 61, 67, 73, 79, 86, 93, 100, 107, 114, 121, 128, 135, 142, 149, 156, 164, 172, 180, 188, 196, 204, 212, 220, 228, 236, 244, 252, 260, 268, 276, 284, 292, 300, 309, 318, 327, 336, 345, 354, 363, 372, 381, 390
OFFSET
0,4
LINKS
FORMULA
a(n) = Sum_{k=0..n} A130242(k).
a(n) = n*A130242(n) - A000032(A130242(n) +1) for n>=3.
G.f.: x/(1-x)^2*(2*x^2 + Sum{k>=2, x^Lucas(k)}).
MATHEMATICA
Join[{0, 0}, Table[Sum[Ceiling[Log[GoldenRatio, k + 1/2]], {k, 0, n}], {n, 1, 50}]] (* G. C. Greubel, Sep 12 2018 *)
PROG
(PARI) for(n=-1, 50, print1(if(n==-1, 0, if(n==0, 0, sum(k=0, n, ceil(log(k + 1/2)/log((1+sqrt(5))/2))))), ", ")) \\ G. C. Greubel, Sep 12 2018
(Magma) [0, 0] cat [(&+[Ceiling(Log(k + 1/2)/Log((1+Sqrt(5))/2)) : k in [0..n]]): n in [1..50]]; // G. C. Greubel, Sep 12 2018
CROSSREFS
Other related sequences: A000032, A130241, A130243, A130245, A130246, A130248, A130252, A130258, A130262. Fibonacci inverse see A130233 - A130240, A104162.
KEYWORD
nonn
AUTHOR
Hieronymus Fischer, May 19 2007
STATUS
approved
Partial sums of A130237.
+10
6
0, 2, 8, 20, 36, 61, 91, 126, 174, 228, 288, 354, 426, 517, 615, 720, 832, 951, 1077, 1210, 1350, 1518, 1694, 1878, 2070, 2270, 2478, 2694, 2918, 3150, 3390, 3638, 3894, 4158, 4464, 4779, 5103, 5436, 5778, 6129, 6489, 6858, 7236, 7623, 8019, 8424, 8838
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} A130237(k).
a(n) = (n*(n+1)*A130233(n) - (Fib(A130233(n)) - 1)*(Fib(A130233(n) + 1) - 1))/2.
G.f.: (1/(1-x)^3)*Sum_{k>=1} (Fib(k)*(1-x) + x)*x^Fib(k).
MATHEMATICA
a[n_]:= a[n]= Sum[j*Floor[Log[GoldenRatio, 3/2 +j*Sqrt[5]]], {j, 0, n}];
Table[a[n], {n, 0, 70}] (* G. C. Greubel, Mar 18 2023 *)
PROG
(Magma) [(&+[j*Floor(Log(3/2 +j*Sqrt(5))/Log((1+Sqrt(5))/2)): j in [0..n]]): n in [0..70]]; // G. C. Greubel, Mar 18 2023
(SageMath)
def A130238(n): return sum(j*int(log(3/2 +j*sqrt(5), golden_ratio)) for j in range(n+1))
[A130238(n) for n in range(71)] # G. C. Greubel, Mar 18 2023
KEYWORD
nonn
AUTHOR
Hieronymus Fischer, May 17 2007
STATUS
approved
a(0) = 1. For n > 0, a(n) is the smallest integer k > n such that (Sum_{i = 1..n} i)/(Sum_{i = n + 1..k} i) < 1/n.
+10
1
1, 2, 4, 7, 10, 13, 17, 21, 25, 30, 35, 40, 45, 50, 56, 62, 68, 74, 81, 87, 94, 101, 108, 115, 122, 130, 138, 145, 153, 162, 170, 178, 187, 195, 204, 213, 222, 231, 240, 250, 259, 269, 279, 289, 298, 309, 319, 329, 339, 350, 361, 371, 382, 393, 404, 415, 427, 438
OFFSET
0,2
COMMENTS
(Sum_{i = 1..n} i)/(Sum_{i = n + 1..k} i) = n*(n + 1)/((k - n)*(n + 1 + k)) < 1/n. It follows that k > -1/2 + sqrt(4*n^3 + 8*n^2 + 4*n + 1)/2.
FORMULA
a(n) = floor(-1/2 + sqrt(4*n^3 + 8*n^2 + 4*n + 1)/2) + 1.
a(n) = round(sqrt(n*(n+1)^2 + 1/4)). - Chai Wah Wu, Mar 11 2024
EXAMPLE
a(3) = 7, because (1 + 2 + 3)/(4 + 5 + 6 + 7) = 3/11 < 1/3 and (1 + 2 + 3)/(4 + 5 + 6) = 2/5 > 1/3.
MAPLE
A368784 := n -> floor(-1/2 + 1/2*sqrt(4*n^3 + 8*n^2 + 4*n + 1)) + 1;
seq(A368784(n), n = 0 .. 57);
MATHEMATICA
a[n_]:= Floor[-1/2 + Sqrt[4*n^3 + 8*n^2 + 4*n + 1]/2] + 1; Array[a, 58, 0] (* Stefano Spezia, Feb 17 2024 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Felix Huber, Feb 15 2024
STATUS
approved

Search completed in 0.007 seconds