Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a138793 -id:a138793
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = indices n for which A138793(n) is prime.
+20
17
OFFSET
1,1
COMMENTS
Indices where number 1 occured in A138789.
There are no more primes for n<=5000.
a(3) > 20000. - Robert Price, Mar 24 2015
EXAMPLE
a(1) = 61 because the number 160695...654321 is prime.
MATHEMATICA
b = {}; a = {}; Do[w = RealDigits[n]; w = First[w]; Do[AppendTo[a, w[[k]]], {k, 1, Length[w]}]; p = FromDigits[Reverse[a]]; If[PrimeQ[p], Print[n]; AppendTo[b, p]], {n, 1, 2000}]; b (* Artur Jasinski, Mar 30 2008 *)
Select[Range[1, 1000], PrimeQ[lst = {}; Do[lst = Join[lst, IntegerDigits[n]], {n, 1, #}]; FromDigits[Reverse[lst]]] &] (* Robert Price, Mar 24 2015 *)
KEYWORD
nonn,bref,hard,more,base
AUTHOR
Artur Jasinski, Mar 30 2008, Mar 31 2008
STATUS
approved
a(1) = 1, a(n) = the smallest prime divisor of A138793(n).
+20
6
1, 3, 3, 29, 3, 3, 19, 3, 3, 457, 3, 3, 16087, 3, 3, 35963, 3, 3, 167, 3, 3, 7, 3, 3, 13, 3, 3, 953, 3, 3, 7, 3, 3, 548636579, 3, 3, 19, 3, 3, 71, 3, 3, 13, 3, 3, 89, 3, 3, 114689, 3, 3, 17, 3, 3, 12037, 3, 3, 7, 3, 3
OFFSET
1,2
COMMENTS
a(61) > 10^11. - Robert Price, Mar 22 2015
LINKS
FORMULA
a(n) = A020639(A138793(n)). - Daniel Suteu, May 27 2022
MATHEMATICA
b = {}; a = {}; Do[w = RealDigits[n]; w = First[w]; Do[AppendTo[a, w[[k]]], {k, 1, Length[w]}]; p = FromDigits[Reverse[a]]; AppendTo[b, First[First[FactorInteger[p]]]], {n, 1, 31}]; b (* Artur Jasinski, Apr 04 2008 *)
lst = {}; Table[First[First[FactorInteger[FromDigits[Reverse[lst = Join[lst, IntegerDigits[n]]]]]]], {n, 1, 60}] (* Robert Price, Mar 22 2015 *)
PROG
(PARI)
f(n) = my(D = Vec(concat(apply(s->Str(s), [1..n])))); eval(concat(vector(#D, k, D[#D-k+1]))); \\ A138793
a(n) = my(k=f(n)); forprime(p=2, 10^6, if(k%p == 0, return(p))); if(n == 1, 1, vecmin(factor(k)[, 1])); \\ Daniel Suteu, May 27 2022
KEYWORD
nonn
AUTHOR
Artur Jasinski, Apr 04 2008
EXTENSIONS
a(32)-a(60) from Robert Price, Mar 22 2015
STATUS
approved
a(n) = A138793(n+1)-A138793(n).
+20
1
20, 300, 4000, 50000, 600000, 7000000, 80000000, 900000000, 1000000000, 1100000000000, 210000000000000, 31000000000000000, 4100000000000000000, 510000000000000000000, 61000000000000000000000
OFFSET
1,1
COMMENTS
First differences of A138793
FORMULA
a(n) = A138793(n+1)-A138793(n)
MATHEMATICA
b = {}; a = {}; Do[w = RealDigits[n]; w = First[w]; Do[AppendTo[a, w[[k]]], {k, 1, Length[w]}]; p = FromDigits[Reverse[a]]; AppendTo[b, p], {n, 1, 31}]; c = {}; Do[AppendTo[c, b[[n + 1]] - b[[n]]], {n, 1, Length[b] - 1}]; c (*Artur Jasinski*)
KEYWORD
nonn,base
AUTHOR
Artur Jasinski, Mar 30 2008
STATUS
approved
a(1) = 1, a(n) = the largest prime divisor of A138793(n).
+20
1
1, 7, 107, 149, 953, 218107, 402859, 4877, 379721, 4349353, 169373, 182473, 1940144339383, 2184641, 437064932281, 5136696159619, 67580875919190833, 1156764458711, 464994193118899, 4617931439293, 1277512103328491957510030561, 8177269604099
OFFSET
1,2
COMMENTS
For the smallest prime divisors of A138793 see A138962.
LINKS
Daniel Suteu and Robert Price, Table of n, a(n) for n = 1..63 (terms a(1)..a(45) from Robert Price)
FORMULA
a(n) = A006530(A138793(n)). - Daniel Suteu, May 26 2022
MATHEMATICA
b = {}; a = {}; Do[w = RealDigits[n]; w = First[w]; Do[AppendTo[a, w[[k]]], {k, 1, Length[w]}]; p = FromDigits[Reverse[a]]; AppendTo[b, First[Last[FactorInteger[p]]]], {n, 1, 31}]; b (* Artur Jasinski, Apr 04 2008 *)
lst = {}; Table[First[Last[FactorInteger[FromDigits[Reverse[lst = Join[lst, IntegerDigits[n]]]]]]], {n, 1, 10}] (* Robert Price, Mar 22 2015 *)
PROG
(PARI)
f(n) = my(D = Vec(concat(apply(s->Str(s), [1..n])))); eval(concat(vector(#D, k, D[#D-k+1]))); \\ A138793
a(n) = if(n == 1, 1, vecmax(factor(f(n))[, 1])); \\ Daniel Suteu, May 26 2022
KEYWORD
nonn,base
AUTHOR
Artur Jasinski, Apr 04 2008
STATUS
approved
a(n) = (A138793(n+1)-A138793(n))/10^n.
+20
0
2, 3, 4, 5, 6, 7, 8, 9, 1, 110, 2100, 31000, 410000, 5100000, 61000000, 710000000, 8100000000, 91000000000, 20000000000, 1200000000000, 22000000000000, 320000000000000, 4200000000000000, 52000000000000000, 620000000000000000
OFFSET
1,1
COMMENTS
First differences of A138793 divided by 10^n
FORMULA
a(n) = A138793(n+1)-A138793(n)
MATHEMATICA
b = {}; a = {}; Do[w = RealDigits[n]; w = First[w]; Do[AppendTo[a, w[[k]]], {k, 1, Length[w]}]; p = FromDigits[Reverse[a]]; AppendTo[b, p], {n, 1, 61}]; c = {}; Do[AppendTo[c, (b[[n + 1]] - b[[n]])/(10^n)], {n, 1, Length[b] - 1}]; c (*Artur Jasinski*)
KEYWORD
base,nonn
AUTHOR
Artur Jasinski, Mar 30 2008
STATUS
approved
Concatenation of numbers from n down to 1.
+10
68
1, 21, 321, 4321, 54321, 654321, 7654321, 87654321, 987654321, 10987654321, 1110987654321, 121110987654321, 13121110987654321, 1413121110987654321, 151413121110987654321, 16151413121110987654321, 1716151413121110987654321, 181716151413121110987654321
OFFSET
1,2
COMMENTS
The first prime term in this sequence is a(82) (see A176024). - Artur Jasinski, Mar 30 2008
For n < 10^4, a(n)/A000217(n) is an integer for n = 1, 2, and 18. The integers are 1, 7 (prime), and 1062667552123515268933651, respectively. - Derek Orr, Sep 04 2014
REFERENCES
F. Smarandache, "Properties of the Numbers", University of Craiova Archives, 1975; Arizona State University Special Collections, Tempe, AZ
FORMULA
a(n+1) = (n+1)*10^len(a(n)) + a(n), where len(k) = number of digits in k.
a(n) = Sum_{k=1..n} k*10^(A058183(k) - (1+floor(log10(k)))). - Alexander Goebel, Mar 07 2020
From Serge Batalov, Dec 08 2021: (Start)
a(n) = ((n*9-1)*10^n+1)/9^2 for n < 10,
a(n) = ((n*99-1)*10^(2*n-19)-89)/99^2*10^10 + (8*10^10+1)/9^2 for 10 <= n < 100,
a(n) = ((n*999-1)*10^(3*n-299)-989)/999^2*10^191 + c2 for 10^2 <= n < 10^3,
a(n) = ((n*9999-1)*10^(4*n-3999)-9989)/9999^2*10^2892 + c3 for 10^3 <= n < 10^4,
a(n) = ((n*99999-1)*10^(5*n-49999)-99989)/99999^2*10^38893 + c4 for 10^4 <= n < 10^5,
a(n) = ((n*999999-1)*10^(6*n-599999)-999989)/999999^2*10^488894 + c5 for 10^5 <= n < 10^6,
where
c2 = (98*10^191 + 879*10^10 + 121)/99^2 = a(99),
c3 = (998*10^2701 - 989)/999^2*10^191 + c2 = a(999),
c4 = (9998*10^36001 - 9989)/9999^2*10^2892 + c3 = a(9999),
c5 = (99998*10^450001 - 99989)/99999^2*10^38893 + c4 = a(99999).
(End)
MAPLE
a[1]:= 1:
for n from 2 to 100 do
a[n]:= n*10^(1+ilog10(a[n-1])) + a[n-1]
od:
seq(a[n], n=1..100); # Robert Israel, Sep 05 2014
# second Maple program:
a:= proc(n) a(n):= `if`(n=1, 1, parse(cat(n, a(n-1)))) end:
seq(a(n), n=1..22); # Alois P. Heinz, Jan 12 2021
MATHEMATICA
b = {}; a = {}; Do[w = RealDigits[n]; w = First[w]; Do[PrependTo[a, w[[Length[w] - k + 1]]], {k, 1, Length[w]}]; p = FromDigits[a]; AppendTo[b, p], {n, 1, 30}]; b (* Artur Jasinski, Mar 30 2008 *)
Table[FromDigits[Flatten[IntegerDigits/@Range[n, 1, -1]]], {n, 20}] (* Harvey P. Dale, Jul 06 2019 *)
PROG
(PARI) a(n)=my(t=n); forstep(k=n-1, 1, -1, t=t*10^#Str(k)+k); t \\ Charles R Greathouse IV, Jul 15 2011
(PARI) A000422(n, p=1, L=1)=sum(k=1, n, k*p*=L+(k==L&&!L*=10)) \\ M. F. Hasler, Nov 02 2016
(Python)
def a(n): return int("".join(map(str, range(n, 0, -1))))
print([a(n) for n in range(1, 19)]) # Michael S. Branicky, Dec 08 2021
CROSSREFS
KEYWORD
nonn,base
AUTHOR
R. Muller
EXTENSIONS
Edited by N. J. A. Sloane, Dec 03 2021
STATUS
approved
a(n) = a(n-1) + sum of digits of n.
+10
32
0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 46, 48, 51, 55, 60, 66, 73, 81, 90, 100, 102, 105, 109, 114, 120, 127, 135, 144, 154, 165, 168, 172, 177, 183, 190, 198, 207, 217, 228, 240, 244, 249, 255, 262, 270, 279, 289, 300, 312, 325, 330, 336, 343, 351, 360, 370, 381
OFFSET
0,3
COMMENTS
Sum of digits of A007908(n). - Franz Vrabec, Oct 22 2007
Also digital sum of A138793(n) for n > 0. - Bruno Berselli, May 27 2011
Sum of the digital sum of i for i from 0 to n. - N. J. A. Sloane, Nov 13 2013
REFERENCES
N. Agronomof, Sobre una función numérica, Revista Mat. Hispano-Americana 1 (1926), 267-269.
Maurice d'Ocagne, Sur certaines sommations arithmétiques, J. Sciencias Mathematicas e Astronomicas 7 (1886), 117-128.
LINKS
P.-H. Cheo and S.-C. Yien, A problem on the k-adic representation of positive integers, Acta Math. Sinica 5, 433-438 (1955).
J. Coquet, Power sums of digital sums, J. Number Theory 22 (1986), no. 2, 161-176.
H. Delange, Sur la fonction sommatoire de la fonction "somme des chiffres", Enseignement Math. (2) 21 (1975), 31-47.
P. J. Grabner, P. Kirschenhofer, H. Prodinger and R. F. Tichy, On the moments of the sum-of-digits function, Applications of Fibonacci numbers, Vol. 5 (St. Andrews, 1992), Kluwer Acad. Publ., Dordrecht, 1993, 263-271.
Hsien-Kuei Hwang, S. Janson, and T.-H. Tsai, Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half: Theory and Applications, ACM Transactions on Algorithms, 13:4 (2017), #47; DOI: 10.1145/3127585.
J.-L. Mauclaire and Leo Murata, On q-additive functions, I. Proc. Japan Acad. Ser. A Math. Sci. 59 (1983), no. 6, 274-276.
J.-L. Mauclaire and Leo Murata, On q-additive functions, II. Proc. Japan Acad. Ser. A Math. Sci. 59 (1983), no. 9, 441-444.
H. Riede, Asymptotic estimation of a sum of digits, Fibonacci Q. 36, No. 1, 72-75 (1998).
J. R. Trollope, An explicit expression for binary digital sums, Math. Mag. 41 1968 21-25.
FORMULA
a(n) = Sum_{k=0..n} s(k) = Sum_{k=0..n} A007953(k), where s(k) denote the sum of the digits of k in decimal representation. Asymptotic expression: a(n-1) = Sum_{k=0..n-1} s(k) = 4.5*n*log_10(n) + O(n). - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Sep 07 2002
a(n) = n*(n+1)/2 - 9*Sum_{k=1..n} Sum_{i=1..ceiling(log_10(k))} floor(k/10^i). - Benoit Cloitre, Aug 28 2003
From Hieronymus Fischer, Jul 11 2007: (Start)
G.f.: Sum_{k>=1} ((x^k - x^(k+10^k) - 9x^(10^k))/(1-x^(10^k)))/(1-x)^2.
a(n) = (1/2)*((n+1)*(n - 18*Sum_{k>=1} floor(n/10^k)) + 9*Sum_{k>=1} (1 + floor(n/10^k))*floor(n/10^k)*10^k).
a(n) = (1/2)*((n+1)*(2*A007953(n)-n) + 9*Sum_{k>=1} (1+floor(n/10^k))*floor(n/10^k)*10^k). (End)
a(n) = A007953(A053064(n)). - Reinhard Zumkeller, Oct 10 2008
From Wojciech Raszka, Jun 14 2019: (Start)
a(10^k - 1) = 10*a(10^(k - 1) - 1) + 45*10^(k - 1) for k > 0.
a(n) = a(n mod m) + MSD*a(m - 1) + (MSD*(MSD - 1)/2)*m + MSD*((n mod m) + 1), where m = 10^(A055642(n) - 1), MSD = A000030(n). (End)
MAPLE
# From N. J. A. Sloane, Nov 13 2013:
digsum:=proc(n, B) local a; a := convert(n, base, B):
add(a[i], i=1..nops(a)): end;
f:=proc(n, k, B) global digsum; local i;
add( digsum(i, B)^k, i=0..n); end;
lprint([seq(digsum(n, 10), n=0..100)]); # A007953
lprint([seq(f(n, 1, 10), n=0..100)]); #A037123
lprint([seq(f(n, 2, 10), n=0..100)]); #A074784
lprint([seq(f(n, 3, 10), n=0..100)]); #A231688
lprint([seq(f(n, 4, 10), n=0..100)]); #A231689
MATHEMATICA
Table[Plus@@Flatten[IntegerDigits[Range[n]]], {n, 0, 200}] (* Enrique Pérez Herrero, Oct 12 2015 *)
a[0] = 0; a[n_] := a[n - 1] + Plus @@ IntegerDigits@ n; Array[a, 70, 0] (* Robert G. Wilson v, Jul 06 2018 *)
PROG
(PARI) a(n)=n*(n+1)/2-9*sum(k=1, n, sum(i=1, ceil(log(k)/log(10)), floor(k/10^i)))
(PARI) a(n)={n++; my(t, i, s); c=n; while(c!=0, i++; c\=10); for(j=1, i, d=(n\10^(i-j))%10; t+=(10^(i-j)*(s*d+binomial(d, 2)+d*9*(i-j)/2)); s+=d); t} \\ David A. Corneth, Aug 16 2013
(Perl) for $i (0..100){ @j = split "", $i; for (@j){ $sum += $_; } print "$sum, "; } __END__ # gamo(AT)telecable.es
(Magma) [ n eq 0 select 0 else &+[&+Intseq(k): k in [0..n]]: n in [0..56] ]; // Bruno Berselli, May 27 2011
CROSSREFS
Cf. also A074784, A231688, A231689.
Partial sums of A007953.
KEYWORD
nonn,base,easy
AUTHOR
Vasiliy Danilov (danilovv(AT)usa.net), Jun 15 1998
EXTENSIONS
More terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Sep 07 2002
STATUS
approved
Concatenation of digits of natural numbers from n down to 1.
+10
21
1, 21, 321, 4321, 54321, 654321, 7654321, 87654321, 987654321, 1987654321, 1987654321, 101987654321, 1101987654321, 11101987654321, 211101987654321, 1211101987654321, 31211101987654321, 131211101987654321
OFFSET
1,2
LINKS
FORMULA
a(n) = A138793(n) mod 10^(n-1). - R. J. Mathar, Sep 17 2011
EXAMPLE
a(11) = a(10) because no number may begin with 0.
a(9)= [123456789]101112131415...=987654321
a(10)=[1234567891]01112131415...=1987654321
a(11)=[12345678910]1112131415...=01987654321=1987654321
a(12)=[123456789101]112131415...=101987654321
a(13)=[1234567891011]12131415...=1101987654321
a(14)=[12345678910111]2131415...=11101987654321
a(15)=[123456789101112]131415...=211101987654321
MATHEMATICA
f[n_] := Block[{t = Reverse@ Flatten@ IntegerDigits@ Range@ n, k}, Reap@ For[k = 1, k <= Length@ t, k++, Sow[FromDigits@ Take[t, -k]]] // Flatten // Rest]; f@ 14 (* Michael De Vlieger, Mar 23 2015 *)
lst = {}; Do[lst = Join[lst, IntegerDigits[n]], {n, 1, 100}]; Table[FromDigits[Reverse[lst[[Range[1, n]]]]], {n, 1, Length[lst]}] (* Robert Price, Mar 24 2015 *)
CROSSREFS
KEYWORD
easy,nonn,base
AUTHOR
Alexandre Wajnberg & Juliette Bruyndonckx, Apr 23 2005
STATUS
approved
Number of distinct prime divisors of the concatenation of n,...,1.
+10
18
0, 2, 2, 2, 3, 2, 2, 3, 3, 3, 2, 3, 3, 4, 5, 4, 6, 8, 4, 5, 4, 5, 4, 5, 6, 7, 5, 5, 7, 8, 3, 6, 5, 7, 8, 6, 4, 3, 6, 5, 8, 6, 3, 7, 6, 5, 7, 7, 3, 6, 3, 7, 9, 9, 3, 4, 4, 6, 3, 3, 5, 8, 5, 6, 7, 7, 4, 8, 8, 4, 8, 4, 7, 8, 10, 3, 7, 6, 4, 7, 7, 1, 3, 8, 3, 8, 5, 4, 5, 6, 11, 9, 6
OFFSET
1,2
EXAMPLE
87654321 = 3*3*1997*4877, distinct prime divisors are 3, 1997 and 4877, hence a(8) = 3.
MATHEMATICA
b = {}; a = {}; Do[w = RealDigits[n]; w = First[w]; Do[PrependTo[a, w[[Length[w] - k + 1]]], {k, 1, Length[w]}]; p = FromDigits[a]; m = FactorInteger[p]; AppendTo[b, Length[m]], {n, 1, 30}]; b (* Artur Jasinski, Mar 30 2008 *)
Table[PrimeNu[FromDigits[Flatten[IntegerDigits/@Range[n, 1, -1]]]], {n, 95}] (* Harvey P. Dale, Oct 03 2015 *)
PROG
(PARI) {a=""; for(n=1, 58, a=concat(n, a); print1(omega(eval(a)), ", "))}
KEYWORD
nonn,base
AUTHOR
Parthasarathy Nambi, Mar 20 2006
EXTENSIONS
Edited and extended by Klaus Brockhaus, Mar 29 2006
Terms a(59)-a(93) from Sean A. Irvine, Nov 04 2009
STATUS
approved
Number of distinct prime divisors of the concatenation of 1..n.
+10
18
0, 2, 2, 2, 3, 3, 2, 4, 3, 3, 6, 4, 3, 3, 3, 3, 4, 5, 6, 6, 8, 6, 4, 5, 4, 6, 5, 5, 4, 7, 3, 5, 6, 2, 7, 5, 4, 4, 6, 8, 5, 7, 4, 4, 9, 7, 5, 7, 6, 9, 3, 3, 4, 9, 5, 4, 6, 4, 4, 6, 3, 7, 4, 9, 6, 8, 3, 7, 7, 6, 5, 5, 3, 9, 5, 4, 5, 6, 6, 7, 4, 7, 6, 3, 5, 7, 6, 5, 9, 8, 6, 6, 7, 5, 6, 5, 2, 9, 5, 9
OFFSET
1,2
COMMENTS
Dario Alpern's factorization program was used for n > 43.
EXAMPLE
123456 = 2*2*2*2*2*2*3*643, with distinct prime divisors 2, 3 and 643. Hence, a(6) = 3.
MATHEMATICA
Table[PrimeNu[FromDigits[Flatten[IntegerDigits[Range[n]]]]], {n, 30}] (* Jan Mangaldan, Jul 07 2020 *)
PROG
(PARI) {a=""; for(n=1, 43, a=concat(a, n); print1(omega(eval(a)), ", "))}
KEYWORD
nonn,base
AUTHOR
Parthasarathy Nambi, Mar 20 2006
EXTENSIONS
Edited and extended by Klaus Brockhaus, Mar 29 2006
Terms 59-100 from Sean A. Irvine, Nov 04 2009
STATUS
approved

Search completed in 0.032 seconds