Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a172487 -id:a172487
     Sort: relevance | references | number | modified | created      Format: long | short | data
Primes p such that p-1 is a semiprime and p+2 is prime or prime squared.
+10
6
5, 7, 11, 23, 47, 59, 107, 167, 179, 227, 347, 359, 839, 1019, 1319, 1367, 1487, 1619, 2027, 2207, 2999, 3119, 3167, 3467, 4127, 4259, 4547, 4787, 4799, 5099, 5639, 5879, 6659, 6779, 6827, 7559, 8819, 10007, 10607, 11699, 12107, 12539, 14387, 14867
OFFSET
1,1
COMMENTS
Except for the second term, a(n)+1 is divisible by 6.
[Proof: a(n)=p is a prime, with p-1=q*r and two primes q<=r by definition. Omitting the special case p=2, p is odd, p+1 is even, so p+1=q*r+2 = 2(1+q*r/2). To show that p+1 is divisible by 6 we show that it is divisible by 2 and by 3; divisibility by 2 has already been shown in the previous sentence. (1+q*r/2 must be integer, so q*r/2 must be integer, so the smaller prime q of the semiprime must be q=2, so p=2*r+1. This shows that p=a(n) are a subset of A005383.) First subcase of the definition is that p+2 is also prime. Then p is a smaller twin prime and by a comment in A003627, p+1 is divisible by 3. Second subcase of the definition is that p+2 = s^2 with s a prime. s can be 3*k+1 or 3*k+2 --p=7 is the exception-- which leads to s^2 = 9*k^2+6*k+1 or s^2=9*k^2+12*k+4, so p+1 = 9*k^2+6*k or 9*k^2+12*k+3, and in both cases p+1 is divisible by 3.]
In consequence, except for the first three terms, first differences a(n+1)-a(n) are also divisible by 6.
LINKS
MATHEMATICA
semiPrimeQ[n_] := Plus @@ Last /@ FactorInteger@n == 2; fQ[n_] := Block[{fi = FactorInteger@n}, Length@ fi == 1 && fi[[1, 2]] == 1 || fi[[1, 2]] == 2]; Select[ Prime@ Range@ 1293, semiPrimeQ[ # - 1] && fQ[ # + 2] &] (* Robert G. Wilson v, Nov 06 2010 *)
Select[Prime[Range[2000]], PrimeOmega[#-1]==2&&Or@@PrimeQ[{#+2, Sqrt[ #+2]}]&] (* Harvey P. Dale, Aug 12 2012 *)
PROG
(Magma) [ p: p in PrimesInInterval(3, 15000) | &+[ k[2]: k in Factorization(p-1) ] eq 2 and (IsPrime(p+2) or (q^2 eq p+2 and IsPrime(q) where q is Isqrt(p+2))) ]; // Klaus Brockhaus, Nov 03 2010
CROSSREFS
Cf. A001358 (semiprimes), A001248 (squares of primes).
KEYWORD
nonn
AUTHOR
Giovanni Teofilatto, Nov 01 2010
EXTENSIONS
Corrected (29 removed) and extended by Klaus Brockhaus, Robert G. Wilson v and R. J. Mathar, Nov 03 2010
STATUS
approved
Odd primes not in A181669.
+10
5
3, 7, 13, 17, 19, 29, 31, 37, 41, 43, 53, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 173, 181, 191, 193, 197, 199, 211, 223, 229, 233, 239, 241, 251, 257, 263, 269, 271
OFFSET
1,1
COMMENTS
Except for term 5, the sequence contains all greater of twin primes
KEYWORD
nonn,easy
AUTHOR
Giovanni Teofilatto, Nov 20 2010
STATUS
approved
Greater twin primes in A172240.
+10
4
7, 13, 19, 31, 43, 61, 73, 103, 109, 139, 151, 181, 193, 199, 229, 241, 271, 283, 313, 349, 421, 433, 463, 523, 571, 601, 619, 643, 661, 811, 823, 829, 859, 883, 1021, 1033, 1051, 1063, 1093, 1153, 1231, 1279, 1291, 1303, 1321, 1429, 1453, 1483, 1489, 1609, 1621, 1669, 1699, 1723, 1789, 1873, 1879, 1933, 1951, 1999
OFFSET
1,1
COMMENTS
For a(n) > 5, first difference of the sequence is divisible by 6. (Conjectured or proved?)
Also for a(n)>5, a(n)-1 is divisible by 6, if a(n)-2 is prime p such that p+1 is divisible by 6.
FORMULA
A172240 INTERSECT A006512.
MAPLE
isA006512 := proc(p) isprime(p) and isprime(p-2) ; end proc:
isA000430 := proc(p) if isprime(p) then true; else if issqr(p) then isprime(sqrt(p)) ; else false; end if; end if; end proc:
isA181602 := proc(p) if isprime(p) then if numtheory[bigomega](p-1) =2 and isA000430(p+2) then true; else false; end if; else false; end if ; end proc:
isA181669 := proc(p) isA181602(p) and (p mod 6)= 5 ; end proc:
isA172240 := proc(n) isprime(n) and not isA181669(n) ; end proc:
isA173176 := proc(n) isA172240(n) and isA006512(n) ; end proc:
for n from 2 to 2000 do if isA173176(n) then printf("%d, ", n) ; end if; end do:
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Giovanni Teofilatto, Nov 22 2010
EXTENSIONS
Corrected by R. J. Mathar, Dec 01 2010
STATUS
approved

Search completed in 0.013 seconds