Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a175530 -id:a175530
     Sort: relevance | references | number | modified | created      Format: long | short | data
Carmichael numbers (A002997) that are Chebyshev pseudoprimes (A175530).
+20
2
443372888629441, 582920080863121, 39671149333495681, 842526563598720001, 2380296518909971201, 3188618003602886401, 33711266676317630401, 54764632857801026161, 122762671289519184001, 361266866679292635601, 4208895375600667752001, 7673096805497432749441
OFFSET
1,1
COMMENTS
Odd composite integer n is in this sequence if n == 1 or p (mod (p^2-1)/2) for every prime p|n.
No other terms below 10^22.
CROSSREFS
Intersection of A002997 and A175530.
Contains A175531 as a subsequence.
KEYWORD
nonn,hard,more
AUTHOR
Max Alekseyev, Feb 19 2018
EXTENSIONS
a(9) from Daniel Suteu confirmed and a(10) added by Max Alekseyev, Dec 16 2020
a(11)-a(12) from Max Alekseyev, Apr 21 2024
STATUS
approved
Chebyshev pseudoprimes to base 2: composite numbers k such that T(k, 2) == 2 (mod k), where T(k, x) is the k-th Chebyshev polynomial of the first kind.
+10
4
209, 231, 399, 455, 901, 903, 923, 989, 1295, 1729, 1855, 2015, 2211, 2345, 2639, 2701, 2795, 2911, 3007, 3201, 3439, 3535, 3801, 4823, 5291, 5719, 6061, 6767, 6989, 7421, 8569, 9503, 9591, 9869, 10439, 10609, 11041, 11395, 11951, 11991, 13133, 13529, 13735, 13871
OFFSET
1,1
COMMENTS
Bang proved that T(p, a) == a (mod p) for every a > 0 and every odd prime. Rayes et al. (1999) defined Chebyshev pseudoprimes to base a as composite numbers k such that T(k, a) == a (mod k). They noted that the first Chebyshev pseudoprime to base 2 is 209.
LINKS
Thøger Bang, Congruence properties of Tchebycheff polynomials, Mathematica Scandinavica, Vol. 2, No. 2 (1955), pp. 327-333, alternative link,
David Pokrass Jacobs, Mohamed O. Rayes, and Vilmar Trevisan. Characterization of Chebyshev Numbers, Algebra and Discrete Mathematics, Vol. 2 (2008), pp. 65-82.
Mohamed O. Rayes, Vilmar Trevisan, and Paul S. Wangy, Chebyshev Polynomials and Primality Tests, ICM Technical Report, Kent State University, Kent, Ohio, 1999. See page 8.
Eric Weisstein's World of Mathematics, Chebyshev Polynomial of the First Kind.
EXAMPLE
209 is in the sequence since 209 = 11 * 19 is composite and T(209, 2) - 2 is divisible by 209.
MATHEMATICA
Select[Range[15000], CompositeQ[#] && Divisible[ChebyshevT[#, 2] - 2, #] &]
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Dec 05 2019
STATUS
approved
Carmichael numbers of order 2.
+10
3
443372888629441, 39671149333495681, 842526563598720001, 2380296518909971201, 3188618003602886401, 4208895375600667752001
OFFSET
1,1
COMMENTS
Odd composite integer k is in this sequence if k == 1 or p (mod p^2 - 1) for every prime p|k.
LINKS
Everett W. Howe, Higher-order Carmichael numbers, Math. Comp. 69 (2000), 1711-1719. doi:10.1090/S0025-5718-00-01225-4
CROSSREFS
Subsequence of A002997, A175530, and A299799.
KEYWORD
nonn,hard,more
AUTHOR
Max Alekseyev, Jun 08 2010
EXTENSIONS
a(6) calculated using data from Claude Goutier and added by Amiram Eldar, Apr 20 2024
STATUS
approved
Chebyshev pseudoprimes to base 3: composite numbers k such that T(k, 3) == 3 (mod k), where T(k, x) is the k-th Chebyshev polynomial of the first kind.
+10
3
14, 35, 119, 169, 385, 434, 574, 741, 779, 899, 935, 961, 1105, 1106, 1121, 1189, 1443, 1479, 2001, 2419, 2555, 2915, 3059, 3107, 3383, 3605, 3689, 3741, 3781, 3827, 4199, 4795, 4879, 4901, 5719, 6061, 6083, 6215, 6265, 6441, 6479, 6601, 6895, 6929, 6931, 6965
OFFSET
1,1
COMMENTS
Bang proved that T(p, a) == a (mod p) for every a > 0 and every odd prime. Rayes et al. (1999) defined Chebyshev pseudoprimes to base a as composite numbers k such that T(k, a) == a (mod k).
LINKS
Thøger Bang, Congruence properties of Tchebycheff polynomials, Mathematica Scandinavica, Vol. 2, No. 2 (1955), pp. 327-333, alternative link,
David Pokrass Jacobs, Mohamed O. Rayes, and Vilmar Trevisan. Characterization of Chebyshev Numbers, Algebra and Discrete Mathematics, Vol. 2 (2008), pp. 65-82.
Mohamed O. Rayes, Vilmar Trevisan, and Paul S. Wangy, Chebyshev Polynomials and Primality Tests, ICM Technical Report, Kent State University, Kent, Ohio, 1999. See page 8.
Eric Weisstein's World of Mathematics, Chebyshev Polynomial of the First Kind.
EXAMPLE
14 is in the sequence since it is composite and T(14, 3) = 26102926097 == 3 (mod 14).
MATHEMATICA
Select[Range[1000], CompositeQ[#] && Divisible[ChebyshevT[#, 3] - 3, #] &]
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Dec 05 2019
STATUS
approved
Chebyshev pseudoprimes to both base 2 and base 3: composite numbers k such that T(k, 2) == 2 (mod k) and T(k, 3) == 3 (mod k), where T(k, x) is the k-th Chebyshev polynomial of the first kind.
+10
3
5719, 6061, 11395, 15841, 17119, 18721, 31535, 67199, 73555, 84419, 117215, 133399, 133951, 174021, 181259, 194833, 226801, 273239, 362881, 469201, 516559, 522899, 534061, 588455, 665281, 700321, 721801, 778261, 903959, 1162349, 1561439, 1708901, 1755001, 1809697
OFFSET
1,1
COMMENTS
Bang proved that T(p, a) == a (mod p) for every a > 0 and every odd prime. Rayes et al. (1999) defined Chebyshev pseudoprimes to base a as composite numbers k such that T(k, a) == a (mod k). They noted that there are no Chebyshev pseudoprimes in both bases 2 and 3 below 2000.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..73 (terms below 10^7)
Thøger Bang, Congruence properties of Tchebycheff polynomials, Mathematica Scandinavica, Vol. 2, No. 2 (1955), pp. 327-333, alternative link,
Mohamed O. Rayes, Vilmar Trevisan, and Paul S. Wangy, Chebyshev Polynomials and Primality Tests, ICM Technical Report, Kent State University, Kent, Ohio, 1999. See page 8.
EXAMPLE
5719 is in the sequence since 5719 = 7 * 19 * 43 is composite and both T(5719 , 2) - 2 and T(5719, 3) - 3 are divisible by 5719.
MATHEMATICA
Select[Range[2*10^4], CompositeQ[#] && Divisible[ChebyshevT[#, 2] - 2, #] && Divisible[ChebyshevT[#, 3] - 3, #] &]
CROSSREFS
Intersection of A330206 and A330207.
KEYWORD
nonn
AUTHOR
Amiram Eldar, Dec 05 2019
STATUS
approved
Squarefree composite numbers n such that p^2 - 1 divides n^2 - 1 for every prime p dividing n.
+10
1
8569, 39689, 321265, 430199, 564719, 585311, 608399, 7056721, 11255201, 17966519, 18996769, 74775791, 75669551, 136209151, 321239359, 446660929, 547674049, 866223359, 1068433631, 1227804929, 1291695119, 2315403649, 2585930689, 7229159729, 7809974369, 8117634239
OFFSET
1,1
COMMENTS
Such numbers are odd and have at least three prime factors.
Problem: are there infinitely many such numbers?
LINKS
PROG
(PARI) isok(n) = {if (issquarefree(n) && !isprime(n), my(f = factor(n)); for (k=1, #f~, if ((n^2-1) % (f[k, 1]^2-1), return (0)); ); return (1); ); } \\ Michel Marcus, May 20 2017
CROSSREFS
Subsequence of A120944.
KEYWORD
nonn
AUTHOR
Thomas Ordowski, May 20 2017
EXTENSIONS
More terms from Michel Marcus, May 20 2017
a(14)-a(26) from Giovanni Resta, May 20 2017
STATUS
approved

Search completed in 0.006 seconds