Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a187124 -id:a187124
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle, read by rows, where row n equals the coefficients of y^k in R_{n-1}(y+y^2) for k=3..n, where R_n(y) is the n-th row polynomial in y for n>=3 with R_3(y)=y^3.
+10
7
1, 1, 3, 1, 6, 15, 1, 9, 42, 112, 1, 12, 81, 377, 1128, 1, 15, 132, 855, 4248, 14373, 1, 18, 195, 1606, 10758, 58269, 221952, 1, 21, 270, 2690, 22416, 159633, 947117, 4029915, 1, 24, 357, 4167, 41340, 359616, 2750067, 17848872, 84135510, 1, 27, 456, 6097
OFFSET
3,3
FORMULA
T(n,k) = Sum_{j=[k/2],k} C(j,k-j)*T(n-1,j) for n>=3, k=3..n, with T(n,3)=1 and T(n,k)=0 when k>n or k<3.
Main diagonal equals column 2 of triangle A135080, which transforms diagonals in the table of coefficients of the iterations of x+x^2.
Triangle A135080 also transforms diagonals in this triangle into each other.
Diagonal m of this triangle equals column 2 of the m-th power of triangle A135080, with diagonal m=1 being the main diagonal.
EXAMPLE
Triangle begins:
1;
1, 3;
1, 6, 15;
1, 9, 42, 112;
1, 12, 81, 377, 1128;
1, 15, 132, 855, 4248, 14373;
1, 18, 195, 1606, 10758, 58269, 221952;
1, 21, 270, 2690, 22416, 159633, 947117, 4029915;
1, 24, 357, 4167, 41340, 359616, 2750067, 17848872, 84135510;
1, 27, 456, 6097, 70008, 715095, 6580260, 54178485, 383237040, 1985740905;
1, 30, 567, 8540, 111258, 1301193, 13895408, 135965676, 1204443432, 9243654925, 52277994396; ...
in which rows can be generated as illustrated below.
Row polynomials R_n(y), n>=3, begin:
R_3(y) = y^3;
R_4(y) = y^3 + 3*y^4;
R_5(y) = y^3 + 6*y^4 + 15*y^5;
R_6(y) = y^3 + 9*y^4 + 42*y^5 + 112*y^6;
R_7(y) = y^3 + 12*y^4 + 81*y^5 + 377*y^6 + 1128*y^7; ...
where row n = coefficients of y^k in R_{n-1}(y+y^2) for k=3..n;
this method is illustrated by:
n=4: R_3(y+y^2) = (y^3 + 3*y^4) + 3*y^5 + y^6;
n=5: R_4(y+y^2) = (y^3 + 6*y^4 + 15*y^5) + 19*y^6 + 12*y^7 + 3*y^8;
n=6: R_5(y+y^2) = (y^3 + 9*y^4 + 42*y^5 + 112*y^6) + 174*y^7 + 156*y^8 + 75*y^9 + 15*y^10; ...
where the n-th row polynomial R_n(y) equals R_{n-1}(y+y^2) truncated to the initial n-2 nonzero terms.
...
ALTERNATE GENERATING METHOD.
Let F^n(x) denote the n-th iteration of x+x^2 with F^0(x) = x.
Then row n of this triangle may be generated by the coefficients of x^k in G(F^[n-2](x)), k=3..n, n>=3, where G(x) is the g.f. of A187124:
G(x) = x^3 - 3*x^4 + 6*x^5 - 18*x^6 + 48*x^7 - 195*x^8 + 549*x^9 - 3465*x^10 + 7452*x^11 - 112707*x^12 - 5994*x^13 - 6866904*x^14 +...
and satisfies: [x^(n+2)] G(F^n(x)) = 0 for n>0.
The table of coefficients in G(F^n(x)) begins:
G(x+x^2) : [1, 0, -3, -5, -12, -72, -333, -2568, -16782, ...];
G(F^2(x)): [1, 3, 0, -19, -72, -261, -1276, -8079, -58932, ...];
G(F^3(x)): [1, 6, 15, 0, -174, -1047, -5256, -29676, -202908, ...];
G(F^4(x)): [1, 9, 42, 112, 0, -2109, -17211, -112371, -753606, ...];
G(F^5(x)): [1, 12, 81, 377, 1128, 0, -31633, -324600, -2614344, ...];
G(F^6(x)): [1, 15, 132, 855, 4248, 14373, 0, -564081, -6957390, ...];
G(F^7(x)): [1, 18, 195, 1606, 10758, 58269, 221952, 0, -11639502,..];
G(F^8(x)): [1, 21, 270, 2690, 22416, 159633, 947117, 4029915, 0,...]; ...
of which this triangle forms the lower triangular portion.
...
TRANSFORMATIONS OF SHIFTED DIAGONALS BY TRIANGLE A135080.
Given main diagonal = A135083 = [0,0,1,3,15,112,1128,14373,...],
the diagonals can be generated from each other as illustrated by:
_ A135080 * A135083 = A187121 = [0,0,1,6,42,377,4248,58269,...];
_ A135080 * A187121 = A187122 = [0,0,1,9,81,855,10758,159633,...];
_ A135080 * A187122 = [0,0,1,12,132,1606,22416,359616,...],
where two leading zeros are included in forming the vectors.
Related triangle A135080 begins:
1;
1, 1;
2, 2, 1;
8, 7, 3, 1;
50, 40, 15, 4, 1;
436, 326, 112, 26, 5, 1;
4912, 3492, 1128, 240, 40, 6, 1; ...
where column 2 of A135080 is the main diagonal in this triangle.
PROG
(PARI) {T(n, k)=local(Rn=y^3); for(m=3, n-1, Rn=subst(truncate(Rn), y, y+y^2+O(y^m))); polcoeff(Rn, k, y)}
(PARI) {T(n, k)=if(k>n|k<3, 0, if(n==3, 1, sum(j=k\2, k, binomial(j, k-j)*T(n-1, j))))}
/* Print the triangle: */
{for(n=3, 13, for(k=3, n, print1(T(n, k), ", ")); print(""))}
CROSSREFS
Cf. diagonals: A135083, A187121, A187122; row sums: A187123.
Cf. related triangles: A135080, A187005, A187115.
Cf. A187124.
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Mar 08 2011
STATUS
approved
G.f. A(x) satisfies: [x^(m+2)] A(F^m(x)) = 0 for m>0 where F^m(x) denotes the m-th iteration of F(x) = x+x^2 with F^0(x)=x.
+10
4
1, -2, 4, -12, 36, -140, 519, -2632, 11776, -82020, 426990, -4149112, 22719260, -309921456, 1487214652, -31477804596, 82495148888, -4227929653508, -7155535440434, -767565126075852, -6245080462329816, -194907866415800464
OFFSET
2,2
EXAMPLE
G.f.: A(x) = x^2 - 2*x^3 + 4*x^4 - 12*x^5 + 36*x^6 - 140*x^7 +...
Let F^n(x) denote the n-th iteration of F(x) = x+x^2 with F^0(x)=x,
then the table of coefficients in A(F^n(x)), n>=0, begins:
[1, -2, 4, -12, 36, -140, 519, -2632, 11776, ...];
[1, 0, -1, -2, -2, -28, -37, -760, -1752, -34632, ...];
[1, 2, 0, -6, -18, -64, -284, -1694, -10640, -82576, ...];
[1, 4, 7, 0, -46, -232, -1062, -5700, -36354, -268212, ...];
[1, 6, 20, 40, 0, -480, -3369, -19988, -126200, -904820, ...];
[1, 8, 39, 138, 326, 0, -6309, -56820, -417184, -3091852, ...];
[1, 10, 64, 318, 1258, 3492, 0, -100082, -1100188, -9660560, ...];
[1, 12, 95, 604, 3242, 14476, 46558, 0, -1859518, -24135624, ...];
[1, 14, 132, 1020, 6844, 40348, 202655, 744320, 0, -39597444, ...];
[1, 16, 175, 1590, 12750, 92140, 598083, 3354848, 13889080, 0, ...]; ...
in which the main diagonal equals all zeros after the initial '1';
the lower triangular portion of the above table forms triangle A187115.
PROG
(PARI) {ITERATE(F, n, p)=local(G=x); for(i=1, n, G=subst(F, x, G+x*O(x^p))); G}
{a(n)=local(A=[1]); if(n<2, 0, for(i=1, n-1, A=concat(A, 0); A[#A]=-Vec(subst(x^2*Ser(A), x, ITERATE(x+x^2, i, #A)))[#A]); A[n-1])}
KEYWORD
sign
AUTHOR
Paul D. Hanna, Mar 08 2011
STATUS
approved
A diagonal of triangle A187120.
+10
4
1, 6, 42, 377, 4248, 58269, 947117, 17848872, 383237040, 9243654925, 247586590398, 7293962774574, 234458181733224, 8167132024738422, 306500617604837898, 12329458457556027538, 529269910501209999900
OFFSET
3,2
COMMENTS
Definition of triangle: A187120(n,k) = [y^k] R_{n-1}(y+y^2) for k=3..n, n>3, where R_n(y) is the n-th row polynomial starting with R_3(y)=y^3.
FORMULA
Equals column 2 in the matrix square of triangle A135080.
PROG
(PARI) {a(n)=local(Rn=y^3); for(m=3, n, Rn=subst(truncate(Rn), y, y+y^2+O(y^m))); polcoeff(Rn, n, y)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 08 2011
STATUS
approved
A diagonal of triangle A187120.
+10
4
1, 9, 81, 855, 10758, 159633, 2750067, 54178485, 1204443432, 29871630837, 818490738402, 24571782872034, 802459134168208, 28332664539686670, 1075700621922471621, 43710289920461797346, 1893011243289589171122
OFFSET
3,2
COMMENTS
Definition of triangle: A187120(n,k) = [y^k] R_{n-1}(y+y^2) for k=3..n, n>3, where R_n(y) is the n-th row polynomial starting with R_3(y)=y^3.
FORMULA
Equals column 2 in the matrix cube of triangle A135080.
PROG
(PARI) {a(n)=local(Rn=y^3); for(m=3, n+1, Rn=subst(truncate(Rn), y, y+y^2+O(y^m))); polcoeff(Rn, n, y)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 08 2011
STATUS
approved
Row sums of triangle A187120.
+10
4
1, 4, 22, 164, 1599, 19624, 292799, 5162063, 105139954, 2430528374, 62877375426, 1799698534522, 56461862815496, 1926534563625822, 71024188655886038, 2813193432059656268, 119136308527407025379, 5371507426340905440926
OFFSET
3,2
COMMENTS
Definition of triangle: A187120(n,k) = [y^k] R_{n-1}(y+y^2) for k=3..n, n>3, where R_n(y) is the n-th row polynomial starting with R_3(y)=y^3.
PROG
(PARI) {a(n)=local(Rn=y^3); for(m=3, n-1, Rn=subst(truncate(Rn), y, y+y^2+O(y^m))); subst(truncate(Rn), y, 1)}
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Paul D. Hanna, Mar 08 2011
STATUS
approved

Search completed in 0.012 seconds