Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a203426 -id:a203426
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = w(n+1)/(4*w(n)), where w = A203426.
+20
3
-3, 48, -1000, 25920, -806736, 29360128, -1224440064, 57600000000, -3018173044480, 174359297654784, -11011033460963328, 754709361539940352, -55801305000000000000, 4427218577690292387840, -375183514207494575620096, 33824309717272203758665728, -3232463698006063164519284736, 326417514496000000000000000000
OFFSET
1,1
LINKS
FORMULA
a(n) = (1/4) * (n+1) * (-2*(n+2))^n. - Andrei Asinowski, Nov 03 2015
MATHEMATICA
(* First program *)
f[j_]:= 1/(2 j + 2); z = 12;
v[n_]:= Product[Product[f[k] - f[j], {j, k-1}], {k, 2, n}];
1/Table[v[n], {n, z}] (* A203426 *)
Table[v[n]/(4 v[n + 1]), {n, z}] (* A203427 *)
(* Second program *)
Table[(-2*(n+2))^n*(n+1)/4, {n, 20}] (* G. C. Greubel, Dec 05 2023 *)
PROG
(Magma) [(-2*(n+2))^n*(n+1)/4: n in [1..20]]; // G. C. Greubel, Dec 05 2023
(SageMath) [(-2*(n+2))^n*(n+1)/4 for n in range(1, 21)] # G. C. Greubel, Dec 05 2023
CROSSREFS
KEYWORD
sign
AUTHOR
Clark Kimberling, Jan 02 2012
EXTENSIONS
Name corrected by Andrei Asinowski, Nov 03 2015
Terms a(14) onward added by G. C. Greubel, Dec 05 2023
STATUS
approved
Product of all possible sums of two distinct numbers taken from among first n natural numbers.
+10
116
1, 3, 60, 12600, 38102400, 2112397056000, 2609908810629120000, 84645606509847871488000000, 82967862872337478796810649600000000, 2781259372192376861719959017613164544000000000
OFFSET
1,2
COMMENTS
From Clark Kimberling, Jan 02 2013: (Start)
Each term divides its successor, as in A006963, and by the corresponding superfactorial, A000178(n), as in A203469.
Abbreviate "Vandermonde" as V. The V permanent of a set S={s(1),s(2),...,s(n)} is a product of sums s(j)+s(k) in analogy to the V determinant as a product of differences s(k)-s(j). Let D(n) and P(n) denote the V determinant and V permanent of S, and E(n) the V determinant of the numbers s(1)^2, s(2)^2, ..., s(n)^2; then P(n) = E(n)/D(n). This is one of many divisibility properties associated with V determinants and permanents. Another is that if S consists of distinct positive integers, then D(n) divides D(n+1) and P(n) divides P(n+1).
Guide to related sequences:
...
s(n).............. D(n)....... P(n)
n................. A000178.... (this)
n+1............... A000178.... A203470
n+2............... A000178.... A203472
n^2............... A202768.... A203475
2^(n-1)........... A203303.... A203477
2^n-1............. A203305.... A203479
n!................ A203306.... A203482
n(n+1)/2.......... A203309.... A203511
Fibonacci(n+1).... A203311.... A203518
prime(n).......... A080358.... A203521
odd prime(n)...... A203315.... A203524
nonprime(n)....... A203415.... A203527
composite(n)...... A203418.... A203530
2n-1.............. A108400.... A203516
n+floor(n/2)...... A203430
n+floor[(n+1)/2].. A203433
1/n............... A203421
1/(n+1)........... A203422
1/(2n)............ A203424
1/(2n+2).......... A203426
1/(3n)............ A203428
Generalizing, suppose that f(x,y) is a function of two variables and S=(s(1),s(2),...s(n)). The phrase, "Vandermonde sequence using f(x,y) applied to S" means the sequence a(n) whose n-th term is the product f(s(j,k)) : 1<=j<k<=n}, which is the Vandermonde determinant if f(x,y)=y-x and the Vandermonde permanent if f(x,y)=x+y.
...
If f(x,y) is a (bivariate) cyclotomic polynomial and S is a strictly increasing sequence of positive integers, then a(n) consists of integers, each of which divides its successor. Guide to sequences for which f(x,y) is x^2+xy+y^2 or x^2-xy+y^2 or x^2+y^2:
...
s(n) ............ x^2+xy+y^2.. x^2-xy+y^2.. x^2+y^2
n ............... A203012..... A203312..... A203475
n+1 ............. A203581..... A203583..... A203585
2n-1 ............ A203514..... A203587..... A203589
n^2 ............. A203673..... A203675..... A203677
2^(n-1) ......... A203679..... A203681..... A203683
n! .............. A203685..... A203687..... A203689
n(n+1)/2 ........ A203691..... A203693..... A203695
Fibonacci(n) .... A203742..... A203744..... A203746
Fibonacci(n+1) .. A203697..... A203699..... A203701
prime(n) ........ A203703..... A203705..... A203707
floor(n/2) ...... A203748..... A203752..... A203773
floor((n+1)/2) .. A203759..... A203763..... A203766
For f(x,y)=x^4+y^4, see A203755 and A203770. (End)
REFERENCES
Amarnath Murthy, Another combinatorial approach towards generalizing the AM-GM inequality, Octagon Mathematical Magazine, Vol. 8, No. 2, October 2000.
Amarnath Murthy, Smarandache Dual Symmetric Functions And Corresponding Numbers Of The Type Of Stirling Numbers Of The First Kind. Smarandache Notions Journal, Vol. 11, No. 1-2-3 Spring 2000.
FORMULA
Partial products of A006963: a(n) = Product((2*i-1)!/i!, i=1..n). - Vladeta Jovovic, May 27 2004
G.f.: G(0)/(2*x) -1/x, where G(k)= 1 + 1/(1 - 1/(1 + 1/((2*k+1)!/(k+1)!)/x/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 15 2013
a(n) ~ sqrt(A/Pi) * 2^(n^2 + n/2 - 7/24) * exp(-3*n^2/4 + n/2 - 1/24) * n^(n^2/2 - n/2 - 11/24), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Jan 26 2019
EXAMPLE
a(4) = (1+2)*(1+3)*(1+4)*(2+3)*(2+4)*(3+4) = 12600.
MAPLE
a:= n-> mul(mul(i+j, i=1..j-1), j=2..n):
seq(a(n), n=1..12); # Alois P. Heinz, Jul 23 2017
MATHEMATICA
f[n_] := Product[(j + k), {k, 2, n}, {j, 1, k - 1}]; Array[f, 10] (* Robert G. Wilson v, Jan 08 2013 *)
PROG
(PARI) A093883(n)=prod(i=1, n, (2*i-1)!/i!) \\ M. F. Hasler, Nov 02 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Apr 22 2004
EXTENSIONS
More terms from Vladeta Jovovic, May 27 2004
STATUS
approved

Search completed in 0.005 seconds