Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a235798 -id:a235798
     Sort: relevance | references | number | modified | created      Format: long | short | data
Total number of parts in all overpartitions of n.
+10
15
2, 6, 16, 34, 68, 128, 228, 390, 650, 1052, 1664, 2584, 3940, 5916, 8768, 12826, 18552, 26566, 37672, 52956, 73848, 102192, 140420, 191688, 260038, 350700, 470384, 627604, 833236, 1101080, 1448500, 1897438, 2475464, 3217016, 4165200, 5373714, 6909180, 8854288
OFFSET
1,1
COMMENTS
It appears that a(n) is also the sum of largest parts of all overpartitions of n.
More generally, It appears that the total number of parts >= k in all overpartitions of n equals the sum of k-th largest parts of all overpartitions of n. In this case k = 1. Also the first column of A235797.
The equivalent sequence for partitions is A006128.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Alois P. Heinz)
MAPLE
b:= proc(n, i) option remember; `if`(n=0, [1, 0],
`if`(i<1, [0$2], b(n, i-1)+add((l-> l+[0, l[1]*j])
(2*b(n-i*j, i-1)), j=1..n/i)))
end:
a:= n-> b(n$2)[2]:
seq(a(n), n=1..40); # Alois P. Heinz, Jan 21 2014
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i<1, {0, 0}, b[n, i-1] + Sum[ Function[l, l+{0, l[[1]]*j}][2*b[n-i*j, i-1]], {j, 1, n/i}]]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
KEYWORD
nonn
AUTHOR
Omar E. Pol, Jan 18 2014
EXTENSIONS
More terms from Alois P. Heinz, Jan 21 2014
STATUS
approved
Triangle read by rows: T(n,k) = 2^k*A116608(n,k), n>=1, k>=1.
+10
13
2, 4, 4, 4, 6, 8, 4, 20, 8, 24, 8, 4, 44, 16, 8, 52, 40, 6, 68, 80, 8, 88, 120, 16, 4, 108, 200, 32, 12, 116, 296, 80, 4, 148, 416, 160, 8, 176, 536, 320, 8, 176, 776, 480, 32, 10, 220, 936, 832, 64, 4, 236, 1232, 1232, 160, 12, 272, 1472, 1872, 320
OFFSET
1,1
COMMENTS
It appears that T(n,k) is the number of overpartitions of n having k distinct parts. (This is true by definition, Joerg Arndt, Jan 20 2014).
Row n has length A003056(n) hence the first element of column k is in row A000217(k).
The first element of column k is A000079(k).
LINKS
EXAMPLE
Triangle begins:
2;
4;
4, 4;
6, 8;
4, 20;
8, 24, 8;
4, 44, 16;
8, 52, 40;
6, 68, 80;
8, 88, 120, 16;
4, 108, 200, 32;
12, 116, 296, 80;
4, 148, 416, 160;
8, 176, 536, 320;
8, 176, 776, 480, 32;
10, 220, 936, 832, 64;
4, 236, 1232, 1232, 160;
12, 272, 1472, 1872, 320;
4, 284, 1880, 2592, 640;
12, 324, 2216, 3632, 1152;
8, 328, 2704, 4944, 1856, 64;
...
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
expand(b(n, i-1)+add(x*b(n-i*j, i-1), j=1..n/i))))
end:
T:= n->(p->seq(2^i*coeff(p, x, i), i=1..degree(p)))(b(n$2)):
seq(T(n), n=1..20); # Alois P. Heinz, Jan 20 2014
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Expand[b[n, i-1] + Sum[x*b[n-i*j, i-1], {j, 1, n/i}]]]]; T[n_] := Function[p, Table[2^i * Coefficient[p, x, i], {i, 1, Exponent[p, x]}]][b[n, n]]; Table[T[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, Oct 20 2016, after Alois P. Heinz *)
CROSSREFS
Row sums give A015128, n >= 1.
Column 1 is A062011.
KEYWORD
nonn,tabf,look
AUTHOR
Omar E. Pol, Jan 18 2014
STATUS
approved
Sum of all parts of all overpartitions of n.
+10
9
2, 8, 24, 56, 120, 240, 448, 800, 1386, 2320, 3784, 6048, 9464, 14560, 22080, 32992, 48688, 71064, 102600, 146720, 207984, 292336, 407744, 564672, 776650, 1061424, 1442016, 1947904, 2617192, 3498720, 4654464, 6163584, 8126448, 10669472, 13952400, 18175896
OFFSET
1,1
COMMENTS
The equivalent sequence for partitions is A066186.
LINKS
FORMULA
a(n) = n*A015128(n).
a(n) ~ exp(Pi*sqrt(n)) / 8. - Vaclav Kotesovec, May 19 2018
MAPLE
b:= proc(n, i) option remember; `if`(n=0, [1, 0],
`if`(i<1, [0$2], b(n, i-1)+add((l-> l+[0, l[1]*i*j])
(2*b(n-i*j, i-1)), j=1..n/i)))
end:
a:= n-> b(n$2)[2]:
seq(a(n), n=1..40); # Alois P. Heinz, Jan 21 2014
MATHEMATICA
Table[n*Sum[PartitionsP[n-k]*PartitionsQ[k], {k, 0, n}], {n, 1, 40}] (* Jean-François Alcover, Oct 20 2016, after Vaclav Kotesovec *)
KEYWORD
nonn
AUTHOR
Omar E. Pol, Jan 18 2014
STATUS
approved
Triangle read by rows in which row n lists the overpartitions of n in colexicographic order.
+10
8
1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 3, 1, 3, 1, 3, 1, 2, 2, 2, 2, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1
OFFSET
1,7
COMMENTS
In the data section the overlined parts cannot be represented correctly, therefore the sequence represents all possible suborderings generated by the overlined parts.
The diagram in the second part of the Example section shows only one of the possible suborderings.
The equivalent sequence for partitions is A211992.
The equivalent sequence for compositions is A228525.
See both sequences for more information.
Row n contains A015128(n) overpartitions.
Row n contains A235792(n) parts.
Row sums give A235793.
EXAMPLE
Triangle begins:
[1], [1];
[1, 1], [1, 1], [2], [2];
[1, 1, 1], [1, 1, 1], [2, 1], [2, 1], [2, 1], [2, 1], [3], [3];
[1, 1, 1, 1], [1, 1, 1, 1], [2, 1, 1], [2, 1, 1], [2, 1, 1], [2, 1, 1], [3, 1], [3, 1], [3, 1], [3, 1], [2, 2], [2, 2], [4], [4];
...
Illustration of initial terms (n: 1..4)
-----------------------------------------
n Diagram Overpartition
-----------------------------------------
. _
1 |.| 1',
1 |_| 1;
. _ _
2 |.| | 1', 1,
2 |_| | 1, 1,
2 | .| 2',
2 |_ _| 2;
. _ _ _
3 |.| | | 1', 1, 1,
3 |_| | | 1, 1, 1,
3 | .|.| 2', 1',
3 | |.| 2, 1',
3 | .| | 2', 1,
3 |_ _| | 2, 1,
3 | .| 3',
3 |_ _ _| 3;
. _ _ _ _
4 |.| | | | 1', 1, 1, 1,
4 |_| | | | 1, 1, 1, 1,
4 | .|.| | 2', 1', 1,
4 | |.| | 2, 1', 1,
4 | .| | | 2', 1, 1,
4 |_ _| | | 2, 1, 1,
4 | .|.| 3', 1',
4 | |.| 3, 1',
4 | .| | 3', 1,
4 |_ _ _| | 3, 1,
4 | .| | 2', 2,
4 |_ _| | 2, 2,
4 | .| 4',
4 |_ _ _ _| 4;
.
KEYWORD
nonn,tabf
AUTHOR
Omar E. Pol, Jan 18 2014
STATUS
approved
Sum of positive ranks of all overpartitions of n.
+10
7
0, 2, 4, 10, 20, 36, 64, 110, 180, 288, 452, 696, 1052, 1568, 2304, 3346, 4808, 6838, 9636, 13464, 18664, 25684, 35104, 47672, 64348, 86368, 115304, 153152, 202452, 266404, 349032, 455406, 591856, 766284, 988544, 1270862, 1628380, 2079828, 2648296, 3362180
OFFSET
1,2
COMMENTS
Consider here that the rank of a overpartition is the largest part minus the number of parts (the same idea as the Dyson's rank of a partition).
It appears that the sum of all ranks of all overpartitions of n is equal to zero.
The equivalent sequence for partitions is A209616.
EXAMPLE
For n = 4 we have:
---------------------------
Overpartitions
of 4 Rank
---------------------------
4 4 - 1 = 3
4 4 - 1 = 3
2+2 2 - 2 = 0
2+2 2 - 2 = 0
3+1 3 - 2 = 1
3+1 3 - 2 = 1
3+1 3 - 2 = 1
3+1 3 - 2 = 1
2+1+1 2 - 3 = -1
2+1+1 2 - 3 = -1
2+1+1 2 - 3 = -1
2+1+1 2 - 3 = -1
1+1+1+1 1 - 4 = -3
1+1+1+1 1 - 4 = -3
---------------------------
The sum of positive ranks of all overpartitions of 4 is 3+3+1+1+1+1 = 10 so a(4) = 10.
PROG
(PARI) a(n)={my(s=0); forpart(p=n, my(r=p[#p]-#p); if(r>0, s+=r*2^#Set(p))); s} \\ Andrew Howroyd, Feb 19 2020
KEYWORD
nonn
AUTHOR
Omar E. Pol, Jan 18 2014
EXTENSIONS
Terms a(7) and beyond from Andrew Howroyd, Feb 19 2020
STATUS
approved
Triangle read by rows in which T(n,k) is the sum of the k-th largest elements in all overpartitions of n.
+10
6
2, 6, 2, 16, 6, 2, 34, 14, 6, 2, 68, 30, 14, 6, 2, 128, 60, 30, 14, 6, 2
OFFSET
1,1
COMMENTS
It appears that T(n,k) is also the total number of parts >= k in all overpartitions of n.
It appears that the first differences of row n together with 2 give row n of triangle A235798.
The equivalent sequence for partitions is A181187.
EXAMPLE
Triangle begins:
2;
6, 2;
16, 6, 2;
34, 14, 6, 2;
68, 30, 14, 6, 2;
128, 60, 30, 14, 6, 2;
...
CROSSREFS
KEYWORD
nonn,tabl,more
AUTHOR
Omar E. Pol, Jan 18 2014
STATUS
approved
a(n) is the sum, over all overpartitions of n, of the non-overlined parts.
+10
3
1, 5, 14, 35, 74, 150, 280, 505, 875, 1470, 2402, 3850, 6034, 9300, 14120, 21131, 31220, 45619, 65930, 94374, 133892, 188350, 262904, 364350, 501459, 685762, 932200, 1259944, 1693750, 2265380, 3015152, 3994585, 5268988, 6920700, 9053748, 11798873, 15319610, 19820738, 25557560
OFFSET
1,2
LINKS
K. Bringmann, J. Lovejoy, and R. Osburn, Rank and crank moments for overpartitions, Journal of Number Theory, 129 (2009), 1758-1772.
FORMULA
G.f.: (Product_{k>=1} (1+q^k)/(1-q^k)) * Sum_{n>=1} n*q^n/(1-q^n).
a(n) = A235793(n) - A335666(n). - Omar E. Pol, Jun 17 2020
EXAMPLE
The 8 overpartitions of 3 are [3], [3'], [2,1], [2,1'], [2',1], [2',1'], [1,1,1], [1',1,1], and so a(3) = 14.
PROG
(PARI) my(N=44, q='q+O('q^N)); Vec( prod(k=1, N, (1+q^k)/(1-q^k)) * sum(k=1, N, k*q^k/(1-q^k)) ) \\ Joerg Arndt, Jun 18 2020
CROSSREFS
Cf. A305102 (number of non-overlined parts).
KEYWORD
nonn
AUTHOR
Jeremy Lovejoy, Jun 17 2020
STATUS
approved
a(n) is the sum, over all overpartitions of n, of the overlined parts.
+10
3
1, 3, 10, 21, 46, 90, 168, 295, 511, 850, 1382, 2198, 3430, 5260, 7960, 11861, 17468, 25445, 36670, 52346, 74092, 103986, 144840, 200322, 275191, 375662, 509816, 687960, 923442, 1233340, 1639312, 2168999, 2857460, 3748772, 4898652, 6377023, 8271294, 10690830, 13771912, 17683642
OFFSET
1,2
LINKS
K. Bringmann, J. Lovejoy, and R. Osburn, Rank and crank moments for overpartitions, Journal of Number Theory, 129 (2009), 1758-1772.
FORMULA
G.f.: (Product_{k>=1} (1+q^k)/(1-q^k)) * Sum_{n>=1} n*q^n/(1+q^n).
a(n) = A235793(n) - A335651(n). - Omar E. Pol, Jun 17 2020
EXAMPLE
The 8 overpartitions of 8 are [3], [3'], [2,1], [2,1'], [2',1], [2',1'], [1,1,1], [1',1,1], and so a(3) = 10.
PROG
(PARI) my(N=44, q='q+O('q^N)); Vec( prod(k=1, N, (1+q^k)/(1-q^k)) * sum(k=1, N, k*q^k/(1+q^k)) ) \\ Joerg Arndt, Jun 18 2020
CROSSREFS
Cf. A305101 (number of overlined parts).
KEYWORD
nonn
AUTHOR
Jeremy Lovejoy, Jun 17 2020
STATUS
approved

Search completed in 0.009 seconds