Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a268173 -id:a268173
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = Sum_{k=0..n} (-1)^k*floor(k^(1/3)).
+10
2
0, -1, 0, -1, 0, -1, 0, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 2, -2, 2, -2, 2, -2
OFFSET
0,28
FORMULA
a(n) = floor(n^(1/3))*(-1)^n/2 - ((-1)^(floor(n^(1/3))+1)+1)/4.
EXAMPLE
a(5) = [0^(1/3)]-[1^(1/3)]+[2^(1/3)]-[3^(1/3)]+[4^(1/3)]-[5^(1/3)] = 0-1+1-1+1-1 = -1, letting [] denote the floor function.
MATHEMATICA
Print[Table[Sum[(-1)^i*Floor[i^(1/3)], {i, 0, n}], {n, 0, 100}]]
PROG
(PARI) a(n)=sum(i=0, n, (-1)^i*sqrtnint(i, 3))
(PARI) a(n)=sqrtnint(n, 3)*(-1)^n/2-((-1)^(sqrtnint(n, 3)+1)+1)/4
KEYWORD
sign,easy
AUTHOR
John M. Campbell, Mar 15 2016
STATUS
approved
a(n) = Sum_{k=0..n} (-1)^k*floor(k^(1/4)).
+10
1
0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1
OFFSET
0,82
FORMULA
a(n) = floor(n^(1/4))*(-1)^n/2-((-1)^(floor(n^(1/4))+1)+1)/4.
EXAMPLE
Letting [] denote the floor function, a(7) = [0^(1/4)] - [1^(1/4)] + [2^(1/4)] - [3^(1/4)] + [4^(1/4)] - [5^(1/4)] + [6^(1/4)] - [7^(1/4)] = 0 - 1 + 1 - 1 + 1 - 1 + 1 - 1 = -1.
MATHEMATICA
Print[Table[Sum[(-1)^k*Floor[k^(1/4)], {k, 0, n}], {n, 0, 100}]] ;
PROG
(PARI) a(n)=floor(n^(1/4))*(-1)^n/2-((-1)^(floor(n^(1/4))+1)+1)/4
(PARI) a(n)=sum(k=0, n, (-1)^k*floor(k^(1/4)))
(PARI) A262352(n) = sum(k=0, n, ((-1)^k)*sqrtnint(k, 4)); \\ Antti Karttunen, Nov 06 2018
KEYWORD
sign,easy
AUTHOR
John M. Campbell, Mar 24 2016
EXTENSIONS
More terms from Antti Karttunen, Nov 06 2018
STATUS
approved
a(n) = Sum_{i=0..n} (-1)^floor(i/2)*floor(sqrt(i)).
+10
0
0, 1, 0, -1, 1, 3, 1, -1, 1, 4, 1, -2, 1, 4, 1, -2, 2, 6, 2, -2, 2, 6, 2, -2, 2, 7, 2, -3, 2, 7, 2, -3, 2, 7, 2, -3, 3, 9, 3, -3, 3, 9, 3, -3, 3, 9, 3, -3, 3, 10, 3, -4, 3, 10, 3, -4, 3, 10, 3, -4, 3, 10, 3, -4, 4, 12, 4, -4, 4, 12, 4, -4, 4, 12, 4, -4, 4
OFFSET
0,6
FORMULA
a(4m)=floor(sqrt(m)), a(4m+1)=floor(3/2*floor(sqrt(4m+1))), a(4m+2)=floor(sqrt(m)), a(4m+3)=-floor((1+sqrt(4m+3))/2).
EXAMPLE
Letting [] denote the floor function, a(7) = [sqrt(0)]+[sqrt(1)]-[sqrt(2)]-[sqrt(3)]+[sqrt(4)]+[sqrt(5)]-[sqrt(6)]-[sqrt(7)] = 0+1-1-1+2+2-2-2 = -1.
MATHEMATICA
Print[Table[Sum[(-1)^(Floor[i/2])*Floor[Sqrt[i]], {i, 0, n}], {n, 0, 100}]]
PROG
(PARI) a(n)=sum(i=0, n, (-1)^(floor(i/2))*floor(sqrt(i)))
KEYWORD
sign,easy
AUTHOR
John M. Campbell, Mar 23 2016
STATUS
approved

Search completed in 0.007 seconds