Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a268442 -id:a268442
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle read by rows, the coefficients of the partial P-polynomials.
+10
16
1, 0, -1, 0, -1, 1, 0, -1, 2, -1, 0, -1, 1, 2, -3, 1, 0, -1, 2, 2, -3, -3, 4, -1, 0, -1, 1, 2, 2, -1, -6, -3, 6, 4, -5, 1, 0, -1, 2, 2, 2, -3, -3, -6, -3, 4, 12, 4, -10, -5, 6, -1, 0, -1, 1, 2, 2, 2, -3, -3, -6, -6, -3, 1, 12, 6, 12, 4, -10, -20, -5, 15, 6, -7, 1
OFFSET
0,9
COMMENTS
For the definition of the partial P-polynomials see the link 'P-transform'. The triangle of coefficients of the inverse partial P-polynomials is A269942.
LINKS
Peter Luschny, The P-transform, 2016.
Peter Luschny, The Partition Transform, A SageMath Jupyter Notebook, GitHub, 2016/2022.
Marko Riedel, Answer to Question 4943578, Mathematics Stack Exchange, 2024.
Peter Taylor, Answer to Question 474483, MathOverflow, 2024.
EXAMPLE
[[1]],
[[0], [-1]],
[[0], [-1], [1]],
[[0], [-1], [2], [-1]],
[[0], [-1], [1, 2], [-3], [1]],
[[0], [-1], [2, 2], [-3, -3], [4], [-1]],
[[0], [-1], [1, 2, 2], [-1, -6, -3], [6, 4], [-5], [1]],
[[0], [-1], [2, 2, 2], [-3, -3, -6, -3], [4, 12, 4], [-10, -5], [6], [-1]]
Replacing the sublists by their sums reduces the triangle to a signed version of the triangle A097805.
MAPLE
PTrans := proc(n, f, nrm:=NULL) local q, p, r, R;
if n = 0 then return [1] fi; R := [seq(0, j=0..n)];
for q in combinat:-partition(n) do
p := [op(ListTools:-Reverse(q)), 0]; r := p[1]+1;
mul(binomial(p[j], p[j+1])*f(j)^p[j], j=1..nops(q));
R[r] := R[r]-(-1)^r*% od;
if nrm = NULL then R else [seq(nrm(n, k)*R[k+1], k=0..n)] fi end:
A269941_row := n -> seq(coeffs(p), p in PTrans(n, n -> x[n])):
seq(lprint(A269941_row(n)), n=0..8);
PROG
(Sage)
def PtransMatrix(dim, f, norm = None, inverse = False, reduced = False):
i = 1; F = [1]
if reduced:
while i <= dim: F.append(f(i)); i += 1
else:
while i <= dim: F.append(F[i-1]*f(i)); i += 1
C = [[0 for k in range(m+1)] for m in range(dim)]
C[0][0] = 1
if inverse:
for m in (1..dim-1):
C[m][m] = -C[m-1][m-1]/F[1]
for k in range(m-1, 0, -1):
C[m][k] = -(C[m-1][k-1]+sum(F[i]*C[m][k+i-1]
for i in (2..m-k+1)))/F[1]
else:
for m in (1..dim-1):
C[m][m] = -C[m-1][m-1]*F[1]
for k in range(m-1, 0, -1):
C[m][k] = -sum(F[i]*C[m-i][k-1] for i in (1..m-k+1))
if norm == None: return C
for m in (1..dim-1):
for k in (1..m): C[m][k] *= norm(m, k)
return C
def PMultiCoefficients(dim, norm = None, inverse = False):
def coefficient(p):
if p <= 1: return [p]
return SR(p).fraction(ZZ).numerator().coefficients()
f = lambda n: var('x'+str(n))
P = PtransMatrix(dim, f, norm, inverse)
return [[coefficient(p) for p in L] for L in P]
print(flatten(PMultiCoefficients(9)))
CROSSREFS
KEYWORD
sign,tabf
AUTHOR
Peter Luschny, Mar 08 2016
STATUS
approved
Triangle read by rows, the coefficients of the Bell polynomials.
+10
7
1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 3, 4, 6, 1, 0, 1, 10, 5, 15, 10, 10, 1, 0, 1, 10, 15, 6, 15, 60, 15, 45, 20, 15, 1, 0, 1, 35, 21, 7, 105, 70, 105, 21, 105, 210, 35, 105, 35, 21, 1, 0, 1, 35, 56, 28, 8, 280, 210, 280, 168, 28, 105, 840, 280, 420, 56, 420, 560, 70, 210, 56, 28, 1
OFFSET
0,9
COMMENTS
The triangle of coefficients of the inverse Bell polynomials is A268442.
REFERENCES
L. Comtet, Advanced combinatorics, The art of finite and infinite expansions, 1974.
LINKS
E. T. Bell, Partition polynomials, Ann. Math., 29 (1927-1928), 38-46.
E. T. Bell, Exponential polynomials, Ann. Math., 35 (1934), 258-277.
Peter Luschny, The Bell transform
FORMULA
E.g.f.: exp( Sum_{k>=1} x_{k}*t^k/k! ), monomials in negative lexicographic order.
EXAMPLE
[[1]]
[[0], [1]]
[[0], [1], [1]]
[[0], [1], [3], [1]]
[[0], [1], [3, 4], [6], [1]]
[[0], [1], [10, 5], [15, 10], [10], [1]]
[[0], [1], [10, 15, 6], [15, 60, 15], [45, 20], [15], [1]]
Replacing the sublists by their sums reduces the triangle to the triangle of the Stirling numbers of second kind (A048993).
MATHEMATICA
BellCoeffs[n_, k_] := Module[{v, r},
v = Table[Subscript[x, j], {j, 1, n}]; (* list of variables *)
r = Table[Subscript[x, j]->1, {j, 1, n}]; (* evaluated at 1 *)
MonomialList[BellY[n, k, v], v, NegativeLexicographic] /. r];
A268441Row[n_] := Table[BellCoeffs[n, k], {k, 0, n}] // Flatten;
Do[Print[A268441Row[n]], {n, 0, 8}] (* Peter Luschny, Feb 08 2016 *)
max = 9; egf = Exp[Sum[x[k]*t^k/k!, {k, 1, max}]]; P = Table[n!* SeriesCoefficient[egf, {t, 0, n}], {n, 0, max-1}]; row[n_] := (s = Split[ Sort[{ Exponent[# /. x[_] -> x, x], #}& /@ (List @@ Expand[P[[n]]])], #1[[1]] == #2[[1]]&]; Join[{0}, #[[All, 2]]& /@ (s /. x[_] -> 1) // Flatten]); row[1] = {1}; Array[row, max] // Flatten (* Jean-François Alcover, Feb 08 2016 *)
PROG
(Sage)
import itertools
def A268441_row(n):
c = [bell_polynomial(n, k).coefficients() for k in (0..n)]
if n>0: c[0] = [0]
return list(itertools.chain(*c))
for n in range(9): print(A268441_row(n))
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Peter Luschny, Feb 07 2016
STATUS
approved
Triangle read by rows, the coefficients of the inverse partial P-polynomials.
+10
1
1, 0, -1, 0, -1, 1, 0, -2, 1, 2, -1, 0, -5, 5, -1, 5, -2, -3, 1, 0, -14, 21, -3, -6, 1, 14, -12, 2, -9, 3, 4, -1, 0, -42, 84, -28, -28, 7, 7, -1, 42, -56, 7, 14, -2, -28, 21, -3, 14, -4, -5, 1
OFFSET
0,8
COMMENTS
The triangle of coefficients of the partial P-polynomials is A269941. For the definition of the inverse partial P-polynomials see the link 'P-transform'.
EXAMPLE
[[1]],
[[0], [-1]],
[[0], [-1], [1]],
[[0], [-2, 1], [2], [-1]],
[[0], [-5, 5, -1], [5, -2], [-3], [1]],
[[0], [-14, 21, -3, -6, 1], [14, -12, 2], [-9, 3], [4], [-1]]],
[[0], [-42,84,-28,-28,7,7,-1],[42,-56,7,14,-2],[-28,21,-3],[14,-4],[-5],[1]]
Replacing the sublists by their sums reduces the triangle to a signed version of the triangle A097805. The column 1 of sublists is A111785 in a different order.
PROG
(Sage)
# For function PMultiCoefficients see A269941.
PMultiCoefficients(7, inverse = True)
CROSSREFS
KEYWORD
sign,tabf
AUTHOR
Peter Luschny, Mar 08 2016
STATUS
approved

Search completed in 0.006 seconds