Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a276794 -id:a276794
     Sort: relevance | references | number | modified | created      Format: long | short | data
Partial sums of A276794.
+20
11
0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 11, 11, 12, 12, 12, 12, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 16, 16, 16, 16, 17, 17, 18, 18, 18, 18, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 23, 23, 23, 23, 24, 24, 25
OFFSET
0,7
COMMENTS
a(n+1) = z_A(n), the number of entries of A278040 (called A number in the W. Lang given there) not exceeding n, for n >= 1 and z_A(-1) := 0. - Wolfdieter Lang, Dec 06 2018
Conjecture: A140102(n) - n = a(n-1). - N. J. A. Sloane, Oct 26 2016 (added Mar 21 2019). This is true - see the Dekking et al. paper. - N. J. A. Sloane, Jul 22 2019
LINKS
F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, Queens in exile: non-attacking queens on infinite chess boards, Electronic J. Combin., 27:1 (2020), #P1.52.
Wolfdieter Lang, The Tribonacci and ABC Representations of Numbers are Equivalent, arXiv preprint arXiv:1810.09787 [math.NT], 2018.
Jeffrey Shallit, Some Tribonacci conjectures, arXiv:2210.03996 [math.CO], 2022.
FORMULA
a(n) = Sum_{k=0..n} A276794(k).
a(n) = n + 1 - (A276796(n) + A276798(n)).
a(n) = 2*B(n) - A(n) + 1, for n >= 0, where A(n) = A278040(n) and B(n) = A278039(n). For a proof see the W. Lang link in A278040, Proposition 7, eq. (41). - Wolfdieter Lang, Dec 06 2018
MAPLE
M:=12;
S[1]:=`0`; S[2]:=`01`; S[3]:=`0102`;
for n from 4 to M do S[n]:=cat(S[n-1], S[n-2], S[n-3]); od:
t0:=S[M]: # has 927 terms of tribonacci ternary word A080843
# get numbers of 0's, 1's, 2's
N0:=[]: N1:=[]: N2:=[]: c0:=0: c1:=0: c2:=0:
L:=length(t0);
for i from 1 to L do
js := substring(t0, i..i);
j:=convert(js, decimal, 10);
if j=0 then c0:=c0+1; elif j=1 then c1:=c1+1; else c2:=c2+1; fi;
N0:=[op(N0), c0]; N1:=[op(N1), c1]; N2:=[op(N2), c2];
od:
N0; N1; N2; # prints A276796, A276797, A276798 (except A276798 is off by 1 because it does not count the initial 0 in A003146). # N. J. A. Sloane, Jun 08 2018
CROSSREFS
A276793(n) + A276794(n) + A276791(n) = 1;
A276796(n) + A276797(n) + A276798(n) = n + 1.
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Oct 28 2016
STATUS
approved
Positions of letter b in the tribonacci word abacabaabacababac... generated by a->ab, b->ac, c->a (cf. A092782).
(Formerly M1571)
+10
56
2, 6, 9, 13, 15, 19, 22, 26, 30, 33, 37, 39, 43, 46, 50, 53, 57, 59, 63, 66, 70, 74, 77, 81, 83, 87, 90, 94, 96, 100, 103, 107, 111, 114, 118, 120, 124, 127, 131, 134, 138, 140, 144, 147, 151, 155, 158, 162, 164, 168, 171, 175, 179, 182, 186, 188, 192, 195, 199, 202, 206, 208
OFFSET
1,1
COMMENTS
A003144, A003145, A003146 may be defined as follows. Consider the map psi: a -> ab, b -> ac, c -> a. The image (or trajectory) of a under repeated application of this map is the infinite word a, b, a, c, a, b, a, a, b, a, c, a, b, a, b, a, c, ... (setting a = 1, b = 2, c = 3 gives A092782). The indices of a, b, c give respectively A003144, A003145, A003146. - Philippe Deléham, Feb 27 2009
The infinite word may also be defined as the limit S_oo where S_1 = a, S_n = psi(S_{n-1}). Or, by S_1 = a, S_2 = ab, S_3 = abac, and thereafter S_n = S_{n-1} S_{n-2} S_{n-3}. It is the unique word such that S_oo = psi(S_oo).
Also indices of b in the sequence closed under a -> abac, b -> aba, c -> ab; starting with a(1) = a. - Philippe Deléham, Apr 16 2004
Theorem: A number m is in this sequence iff the tribonacci representation of m-1 ends with 01. [Duchene and Rigo, Remark 2.5] - N. J. A. Sloane, Mar 02 2019
REFERENCES
Eric Duchêne, Aviezri S. Fraenkel, Vladimir Gurvich, Nhan Bao Ho, Clark Kimberling, Urban Larsson, Wythoff Visions, Games of No Chance, Vol. 5; MSRI Publications, Vol. 70 (2017), pages 101-153.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Elena Barcucci, Luc Belanger and Srecko Brlek, On tribonacci sequences, Fib. Q., 42 (2004), 314-320.
L. Carlitz, R. Scoville and V. E. Hoggatt, Jr., Fibonacci representations of higher order, Fib. Quart., 10 (1972), 43-69. The present sequence is called b.
F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, Queens in exile: non-attacking queens on infinite chess boards, Electronic J. Combin., 27:1 (2020), #P1.52.
Eric Duchêne and Michel Rigo, A morphic approach to combinatorial games: the Tribonacci case. RAIRO - Theoretical Informatics and Applications, 42, 2008, pp 375-393. doi:10.1051/ita:2007039. [Also available from Numdam]
A. J. Hildebrand, Junxian Li, Xiaomin Li, Yun Xie, Almost Beatty Partitions, arXiv:1809.08690 [math.NT], 2018.
Wolfdieter Lang, The Tribonacci and ABC Representations of Numbers are Equivalent, arXiv preprint arXiv:1810.09787 [math.NT], 2018.
FORMULA
It appears that a(n) = floor(n*t^2) + eps for all n, where t is the tribonacci constant A058265 and eps is 0, 1, or 2. See A276799. - N. J. A. Sloane, Oct 28 2016. This is true - see the Dekking et al. paper. - N. J. A. Sloane, Jul 22 2019
MAPLE
M:=17; S[1]:=`a`; S[2]:=`ab`; S[3]:=`abac`;
for n from 4 to M do S[n]:=cat(S[n-1], S[n-2], S[n-3]); od:
t0:=S[M]: l:=length(t0); t1:=[];
for i from 1 to l do if substring(t0, i..i) = `b` then t1:=[op(t1), i]; fi; od: # N. J. A. Sloane
MATHEMATICA
StringPosition[SubstitutionSystem[{"a" -> "ab", "b" -> "ac", "c" -> "a"}, "b", {#}][[1]], "b"][[All, 1]] &@9 (* Michael De Vlieger, Mar 30 2017, Version 10.2, after JungHwan Min at A003144 *)
CROSSREFS
First differences give A276789. A278040 (subtract 1 from each term, and use offset 1).
For tribonacci representations of numbers see A278038.
KEYWORD
nonn
EXTENSIONS
More terms from Philippe Deléham, Apr 16 2004
Corrected by T. D. Noe and N. J. A. Sloane, Nov 01 2006
Entry revised by N. J. A. Sloane, Oct 13 2016
STATUS
approved
Partial sums of A276791.
+10
11
1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15
OFFSET
0,5
COMMENTS
a(n+1) - 1 = z_C(n), where z_C(n) is the number of C numbers A276798 not exceeding n, for n >= 0, and z_C(-1) = 0. - Wolfdieter Lang, Dec 05 2018
Conjecture: 3*n - A140101(n) = a(n-1). - N. J. A. Sloane, Oct 26 2016 (added Mar 21 2019). This is true - see the Dekking et al. paper. - N. J. A. Sloane, Jul 22 2019
LINKS
F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, Queens in exile: non-attacking queens on infinite chess boards, Electronic J. Combin., 27:1 (2020), #P1.52.
Wolfdieter Lang, The Tribonacci and ABC Representations of Numbers are Equivalent, arXiv preprint arXiv:1810.09787 [math.NT], 2018.
Jeffrey Shallit, Some Tribonacci conjectures, arXiv:2210.03996 [math.CO], 2022.
FORMULA
a(n) = Sum_{k=0..n} A276791(k), for n >= 0.
a(n) = n + 1 - (A276796(n) + A276797(n).
a(n) = 2*n + 1 - B(n), where B(n) = A278039(n), n >= 0. For a proof see the comment on z_C and Proposition 7, eq. 43, of the W. Lang link given in A080843. - Wolfdieter Lang, Dec 05 2018
MAPLE
M:=12;
S[1]:=`0`; S[2]:=`01`; S[3]:=`0102`;
for n from 4 to M do S[n]:=cat(S[n-1], S[n-2], S[n-3]); od:
t0:=S[M]: # has 927 terms of tribonacci ternary word A080843
# get numbers of 0's, 1's, 2's
N0:=[]: N1:=[]: N2:=[]: c0:=0: c1:=0: c2:=0:
L:=length(t0);
for i from 1 to L do
js := substring(t0, i..i);
j:=convert(js, decimal, 10);
if j=0 then c0:=c0+1; elif j=1 then c1:=c1+1; else c2:=c2+1; fi;
N0:=[op(N0), c0]; N1:=[op(N1), c1]; N2:=[op(N2), c2];
od:
N0; N1; N2; # prints A276796, A276797, A276798 (except A276798 is off by 1 because it does not count the initial 0 in A003146). # N. J. A. Sloane, Jun 08 2018
CROSSREFS
A276793(n) + A276794(n) + A276791(n) = 1;
A276796(n) + A276797(n) + A276798(n) = n + 1.
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Oct 28 2016
STATUS
approved
Partial sums of A276793.
+10
10
0, 1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 25, 25, 26, 26, 27, 27, 28, 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35, 36, 36, 37, 37, 38, 38, 39, 39, 40, 40, 41, 42, 42, 43, 43, 44
OFFSET
0,4
COMMENTS
a(n+1) = z_B(n), the number of B numbers A278039 not exceeding n. - Wolfdieter Lang, Dec 05 2018
Conjecture: A140100(n) - n = a(n-1). - N. J. A. Sloane, Oct 26 2016 (added Mar 21 2019). This is true: see the Dekking et al. paper. - N. J. A. Sloane, Jul 22 2019
LINKS
F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, Queens in exile: non-attacking queens on infinite chess boards, Electronic J. Combin., 27:1 (2020), #P1.52.
Wolfdieter Lang, The Tribonacci and ABC Representations of Numbers are Equivalent, arXiv preprint arXiv:1810.09787 [math.NT], 2018.
Jeffrey Shallit, Some Tribonacci conjectures, arXiv:2210.03996 [math.CO], 2022.
FORMULA
a(n) = Sum_{k=0..n} A276793(k), n >= 0.
a(n) = n + 1 - (A276797(n) + A276798(n)).
a(n) = A(n) - B(n) - (n + 1), where A(n) = A278040(n) and B(n) = A278039(n), n >= 0. For a proof see the W. Lang link in A278040, Proposition 7, eq. (42). - Wolfdieter Lang, Dec 05 2018
MAPLE
M:=12;
S[1]:=`0`; S[2]:=`01`; S[3]:=`0102`;
for n from 4 to M do S[n]:=cat(S[n-1], S[n-2], S[n-3]); od:
t0:=S[M]: # has 927 terms of tribonacci ternary word A080843
# get numbers of 0's, 1's, 2's
N0:=[]: N1:=[]: N2:=[]: c0:=0: c1:=0: c2:=0:
L:=length(t0);
for i from 1 to L do
js := substring(t0, i..i);
j:=convert(js, decimal, 10);
if j=0 then c0:=c0+1; elif j=1 then c1:=c1+1; else c2:=c2+1; fi;
N0:=[op(N0), c0]; N1:=[op(N1), c1]; N2:=[op(N2), c2];
od:
N0; N1; N2; # prints A276796, A276797, A276798 (except A276798 is off by 1 because it does not count the initial 0 in A003146). # N. J. A. Sloane, Jun 08 2018
CROSSREFS
Cf. A003144, A140100, A276793 (first differences), A278039, A278040.
A276793(n) + A276794(n) + A276791(n) = 1;
A276796(n) + A276797(n) + A276798(n) = n + 1.
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Oct 28 2016
STATUS
approved
Indicator function of (A003146 prefixed with 0).
+10
8
1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0
OFFSET
0
COMMENTS
Also, this has 1's where A275925 has 3's (which is why the offset is 0).
Also, apart from the initial 1, this has 1's where the tribonacci word A080843 has 2's.
a(n+1) = 1 iff n is a member of A278041, for n >= 0. - Wolfdieter Lang, Dec 06 2018
LINKS
Wolfdieter Lang, The Tribonacci and ABC Representations of Numbers are Equivalent, arXiv preprint arXiv:1810.09787 [math.NT], 2018.
FORMULA
a(n+1) = t(n)*(t(n) - 1)/2, for n >= 0, and a(0) = 0, where t(n) = A080843(n). - Wolfdieter Lang, Dec 06 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Oct 18 2016
EXTENSIONS
More precise definition by Georg Fischer, Sep 01 2020
STATUS
approved
Indicator function for A003144.
+10
7
1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0
OFFSET
1
COMMENTS
a(n) = 1 iff n is a term of A003144.
The binary complement of (a(n)) is called the "binary Tribonacci word" in Mousavi and Shallit (see Theorem 23). It is defined to be the change of alphabet {0,1,2} -> {0,1,1} of the tribonacci word 0102010010... - Michel Dekking, Oct 12 2019
LINKS
Wolfdieter Lang, The Tribonacci and ABC Representations of Numbers are Equivalent, arXiv preprint arXiv:1810.09787 [math.NT], 2018.
Hamoon Mousavi and Jeffrey Shallit, Mechanical Proofs of Properties of the Tribonacci Word, arXiv:1407.5841 [cs.FL], 2014.
H. Mousavi and J. Shallit, Mechanical Proofs of Properties of the Tribonacci Word, In: Manea F., Nowotka D. (eds) Combinatorics on Words. WORDS 2015. Lecture Notes in Computer Science, vol 9304. Springer, 2015, pp. 170-190.
FORMULA
a(n) = (A080843(n-1)-1)*(A080843(n-1)-2)/2. - Wolfdieter Lang, Dec 06 2018
CROSSREFS
A276793(n) + A276794(n) + A276791(n) = 1; A276796(n) + A276797(n) + A276798(n) = n+1.
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Oct 28 2016
EXTENSIONS
Data and offset changed by Michel Dekking, Oct 12 2019
STATUS
approved

Search completed in 0.024 seconds