Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a304187 -id:a304187
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangular matrix T, read by rows, where row n equals row (n-1) of T^(n-1) after appending '1' for the main diagonal.
+10
25
1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 19, 9, 3, 1, 1, 191, 70, 18, 4, 1, 1, 2646, 795, 170, 30, 5, 1, 1, 46737, 11961, 2220, 335, 45, 6, 1, 1, 1003150, 224504, 37149, 4984, 581, 63, 7, 1, 1, 25330125, 5051866, 758814, 92652, 9730, 924, 84, 8, 1, 1, 735180292, 132523155, 18301950, 2065146, 199692, 17226, 1380, 108, 9, 1, 1
OFFSET
0,7
COMMENTS
Remarkably, T equals the product of these triangular matrices: T = A107867*A107862^-1 = A107870*A107867^-1 = A107873*A107870^-1; reversing the order of these products yields triangle A107876.
LINKS
Alois P. Heinz, Rows n = 0..140, flattened (first 31 rows from Paul D. Hanna)
EXAMPLE
Triangle begins:
1;
1, 1;
1, 1, 1;
3, 2, 1, 1;
19, 9, 3, 1, 1;
191, 70, 18, 4, 1, 1;
2646, 795, 170, 30, 5, 1, 1;
46737, 11961, 2220, 335, 45, 6, 1, 1;
1003150, 224504, 37149, 4984, 581, 63, 7, 1, 1;
25330125, 5051866, 758814, 92652, 9730, 924, 84, 8, 1, 1;
735180292, 132523155, 18301950, 2065146, 199692, 17226, 1380, 108, 9, 1, 1; ...
Row 4 starts with row 3 of T^3 which begins:
1;
3, 1;
6, 3, 1;
19, 9, 3, 1; ...
row 5 starts with row 4 of T^4 which begins:
1;
4, 1;
10, 4, 1;
34, 14, 4, 1;
191, 70, 18, 4, 1; ...
An ALTERNATE GENERATING METHOD is illustrated as follows.
For row 4:
Start with a '1' and append 2 zeros,
take partial sums and append 1 zero,
take partial sums thrice more, resulting in:
1, 0, 0;
1, 1, 1, 0;
1, 2, 3, 3;
1, 3, 6, 9;
1, 4,10,19.
Final nonzero terms form row 4: [19,9,3,1,1].
For row 5:
Start with a '1' and append 3 zeros,
take partial sums and append 2 zeros,
take partial sums and append 1 zero,
take partial sums thrice more, resulting in:
1, 0, 0, 0;
1, 1, 1, 1, 0, 0;
1, 2, 3, 4, 4, 4, 0;
1, 3, 6,10,14, 18, 18;
1, 4,10,20,34, 52, 70;
1, 5,15,35,69,121,191;
where the final nonzero terms form row 5: [191,70,18,4,1,1].
Likewise, for row 6:
1, 0, 0, 0, 0;
1, 1, 1, 1, 1, 0, 0, 0;
1, 2, 3, 4, 5, 5, 5, 5, 0, 0;
1, 3, 6,10, 15, 20, 25, 30, 30, 30, 0;
1, 4,10,20, 35, 55, 80,110, 140, 170, 170;
1, 5,15,35, 70,125,205,315, 455, 625, 795;
1, 6,21,56,126,251,456,771,1226,1851,2646;
where the final nonzero terms form row 6: [2646,795,170,30,5,1,1].
Continuing in this way generates all rows of this triangle.
MAPLE
b:= proc(n) option remember;
Matrix(n, (i, j)-> T(i-1, j-1))^(n-1)
end:
T:= proc(n, k) option remember;
`if`(n=k, 1, `if`(k>n, 0, b(n)[n, k+1]))
end:
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Apr 13 2020
MATHEMATICA
b[n_] := b[n] = MatrixPower[Table[T[i-1, j-1], {i, n}, {j, n}], n-1];
T[n_, k_] := T[n, k] = If[n == k, 1, If[k > n, 0, b[n][[n, k+1]]]];
Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Apr 25 2020, after Alois P. Heinz *)
PROG
(PARI) {T(n, k) = my(A=Mat(1), B); for(m=1, n+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i, B[i, j]=1, B[i, j] = (A^(i-2))[i-1, j]); )); A=B); return(A[n+1, k+1])}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
(PARI) {T(n, k) = my(A=vector(n+1), p); A[1]=1; for(j=1, n-k-1, p=(n-1)*(n-2)/2-(n-j-1)*(n-j-2)/2; A = Vec((Polrev(A)+x*O(x^p))/(1-x))); A = Vec((Polrev(A) +x*O(x^p)) / (1-x) ); A[p+1]}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
CROSSREFS
Columns are A101481, A101482, A101483, row sums form A101484.
Cf. A107876 (dual triangle).
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Jan 21 2005, Jul 26 2006, May 27 2007
STATUS
approved
G.f. A(x) satisfies: 0 = [x^n] (1+x)^(n*(n-1)/2) / A(x) for n>0.
+10
5
1, 0, 0, 1, 9, 117, 1851, 34923, 765933, 19155084, 538051164, 16771165230, 574424285076, 21443516818065, 866521903003641, 37683366660458208, 1754777541925339779, 87115221430910051901, 4592968693335470802627, 256294382115032521083411, 15090698035153332532531074
OFFSET
0,5
FORMULA
[x^n] (1+x)^(n*(n+1)/2) / A(x) = A101481(n+1) = A101479(n+1,0) for n>=0.
[x^n] (1+x)^((n+1)*(n+2)/2) / A(x) = Sum_{k=0..n} A101479(n+2,k+1) * A101479(k+1,0) for n>=0.
EXAMPLE
G.f.: A(x) = 1 + x^3 + 9*x^4 + 117*x^5 + 1851*x^6 + 34923*x^7 + 765933*x^8 + 19155084*x^9 + 538051164*x^10 + 16771165230*x^11 + 574424285076*x^12 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k in (1+x)^(n*(n-1)/2) / A(x) begins:
n=0: [1, 0, 0, -1, -9, -117, -1850, -34905, -765618, ...];
n=1: [1, 0, 0, -1, -9, -117, -1850, -34905, -765618, ...];
n=2: [1, 1, 0, -1, -10, -126, -1967, -36755, -800523, ...];
n=3: [1, 3, 3, 0, -12, -147, -2229, -40815, -876000, ...];
n=4: [1, 6, 15, 19, 0, -180, -2706, -47955, -1005279, ...];
n=5: [1, 10, 45, 119, 191, 0, -3335, -59840, -1214055, ...];
n=6: [1, 15, 105, 454, 1341, 2646, 0, -73965, -1545531, ...];
n=7: [1, 21, 210, 1329, 5955, 19833, 46737, 0, -1913457, ...];
n=8: [1, 28, 378, 3275, 20438, 97533, 364936, 1003150, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating that 0 = [x^n] (1+x)^(n*(n-1)/2) / A(x) for n>0.
RELATED SEQUENCES.
The secondary diagonal in the above table that begins
[1, 1, 3, 19, 191, 2646, 46737, 1003150, 25330125, ...]
yields A101481, column 0 of triangle A101479.
Related triangular matrix T = A101479 begins:
1;
1, 1;
1, 1, 1;
3, 2, 1, 1;
19, 9, 3, 1, 1;
191, 70, 18, 4, 1, 1;
2646, 795, 170, 30, 5, 1, 1;
46737, 11961, 2220, 335, 45, 6, 1, 1;
1003150, 224504, 37149, 4984, 581, 63, 7, 1, 1; ...
in which row n equals row (n-1) of T^(n-1) followed by '1' for n>0.
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( (1+x +x*O(x^m))^((m-1)*(m-2)/2)/Ser(A) )[m] ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 08 2018
STATUS
approved
G.f. A(x) satisfies: 0 = [x^n] (1+x)^(n*(n+1)/2) / A(x) for n>0.
+10
4
1, 1, 1, 6, 51, 609, 9284, 171779, 3729929, 92828134, 2602268335, 81082146565, 2778537934965, 103826098384590, 4200631499008965, 182912327481135887, 8528448938007615767, 423908532350099458532, 22375155669520993773517, 1249871928128324730985042, 73662719257076005954584046
OFFSET
0,4
FORMULA
[x^n] (1+x)^((n+1)*(n+2)/2) / A(x) = A101482(n+1) = A101479(n+2,1) for n>=0.
[x^n] (1+x)^((n+2)*(n+3)/2) / A(x) = Sum_{k=0..n} A101479(n+3,k+2) * A101479(k+2,1) for n>=0.
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 6*x^3 + 51*x^4 + 609*x^5 + 9284*x^6 + 171779*x^7 + 3729929*x^8 + 92828134*x^9 + 2602268335*x^10 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k in (1+x)^(n*(n+1)/2) / A(x) begins:
n=0: [1, -1, 0, -5, -40, -513, -8092, -153395, -3388500, ...];
n=1: [1, 0, -1, -5, -45, -553, -8605, -161487, -3541895, ...];
n=2: [1, 2, 0, -7, -56, -648, -9756, -179250, -3873474, ...];
n=3: [1, 5, 9, 0, -75, -837, -11875, -210518, -4441140, ...];
n=4: [1, 9, 35, 70, 0, -1096, -15664, -263340, -5357885, ...];
n=5: [1, 14, 90, 345, 795, 0, -20260, -352235, -6842115, ...];
n=6: [1, 20, 189, 1115, 4510, 11961, 0, -452166, -9245340, ...];
n=7: [1, 27, 350, 2893, 17019, 74282, 224504, 0, -11809259, ...];
n=8: [1, 35, 594, 6505, 51545, 312984, 1483340, 5051866, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating that 0 = [x^n] (1+x)^(n*(n+1)/2) / A(x) for n>0.
RELATED SEQUENCES.
The secondary diagonal in the above table that begins
[1, 2, 9, 70, 795, 11961, 224504, 5051866, 132523155, ...]
yields A101482, column 1 of triangle A101479.
Related triangular matrix T = A101479 begins:
1;
1, 1;
1, 1, 1;
3, 2, 1, 1;
19, 9, 3, 1, 1;
191, 70, 18, 4, 1, 1;
2646, 795, 170, 30, 5, 1, 1;
46737, 11961, 2220, 335, 45, 6, 1, 1;
1003150, 224504, 37149, 4984, 581, 63, 7, 1, 1; ...
in which row n equals row (n-1) of T^(n-1) followed by '1' for n>0.
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( (1+x +x*O(x^m))^(m*(m-1)/2)/Ser(A) )[m] ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 08 2018
STATUS
approved
G.f. A(x) satisfies: 0 = [x^n] (1+x)^((n+1)*(n+2)/2) / A(x) for n>0.
+10
4
1, 3, 6, 24, 189, 2199, 33495, 625743, 13778469, 348258723, 9916111584, 313642702743, 10901017499472, 412730651160567, 16902257604014685, 744247858158013245, 35058132248539742325, 1758994171367292095805, 93646661943861501833100, 5272500660870261306912750
OFFSET
0,2
FORMULA
[x^n] (1+x)^((n+2)*(n+3)/2) / A(x) = A101483(n+1) = A101479(n+3,2) for n>=0.
[x^n] (1+x)^((n+3)*(n+4)/2) / A(x) = Sum_{k=0..n} A101479(n+4,k+3) * A101479(k+3,2) for n>=0.
EXAMPLE
G.f.: A(x) = 1 + 3*x + 6*x^2 + 24*x^3 + 189*x^4 + 2199*x^5 + 33495*x^6 + 625743*x^7 + 13778469*x^8 + 348258723*x^9 + 9916111584*x^10 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k in (1+x)^((n+1)*(n+2)/2) / A(x) begins:
n=0: [1, -2, 0, -12, -105, -1434, -23877, -473730, -10881882, ...];
n=1: [1, 0, -3, -14, -129, -1656, -26850, -522918, -11853219, ...];
n=2: [1, 3, 0, -22, -180, -2088, -32219, -608565, -13504179, ...];
n=3: [1, 7, 18, 0, -255, -2937, -41739, -750711, -16140285, ...];
n=4: [1, 12, 63, 170, 0, -3996, -58877, -991308, -20341875, ...];
n=5: [1, 18, 150, 748, 2220, 0, -78435, -1401570, -27251715, ...];
n=6: [1, 25, 297, 2211, 11271, 37149, 0, -1843458, -38615364, ...];
n=7: [1, 33, 525, 5343, 38745, 207663, 758814, 0, -50361381, ...];
n=8: [1, 42, 858, 11340, 108630, 797100, 4541805, 18301950, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating that 0 = [x^n] (1+x)^((n+1)*(n+2)/2) / A(x) for n>0.
RELATED SEQUENCES.
The secondary diagonal in the above table that begins
[1, 3, 18, 170, 2220, 37149, 758814, 18301950, 508907970, ...]
yields A101483, column 2 of triangle A101479.
Related triangular matrix T = A101479 begins:
1;
1, 1;
1, 1, 1;
3, 2, 1, 1;
19, 9, 3, 1, 1;
191, 70, 18, 4, 1, 1;
2646, 795, 170, 30, 5, 1, 1;
46737, 11961, 2220, 335, 45, 6, 1, 1;
1003150, 224504, 37149, 4984, 581, 63, 7, 1, 1; ...
in which row n equals row (n-1) of T^(n-1) followed by '1' for n>0.
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( (1+x +x*O(x^m))^(m*(m+1)/2)/Ser(A) )[m] ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 08 2018
STATUS
approved

Search completed in 0.015 seconds