Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a306227 -id:a306227
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of ways to write n as w + x^5 + pen(y) + pen(z), where w is 0 or 1, and x,y,z are integers with x >= w and pen(y) < pen(z), and where pen(m) denotes the pentagonal number m*(3*m-1)/2.
+10
6
1, 2, 3, 2, 2, 2, 4, 4, 4, 2, 1, 2, 3, 4, 3, 3, 4, 3, 3, 2, 2, 3, 3, 4, 2, 2, 4, 5, 5, 2, 2, 1, 3, 4, 5, 4, 5, 6, 6, 6, 6, 7, 4, 4, 4, 3, 5, 5, 6, 4, 3, 6, 5, 5, 5, 4, 5, 6, 9, 7, 4, 4, 5, 5, 3, 5, 4, 4, 4, 5, 4, 6, 8, 7, 5, 2, 6, 5, 8, 6, 3, 3, 5, 7, 6, 4, 3, 3, 4, 5, 5, 6, 7, 9, 5, 4, 4, 5, 6, 3
OFFSET
1,2
COMMENTS
Conjecture: a(n) > 0 for all n > 0. In other words, any positive integer can be written as the sum of two fifth powers of nonnegative integers one of which is 0 or 1, and two distinct generalized pentagonal numbers.
We have verified a(n) > 0 for all n = 1..2*10^6. The conjecture implies that the set A = {x^5 + pen(y): x = 0,1,2,... and y is an integer} is an additive basis of order two (i.e., the sumset A + A coincides with {0,1,2,...}).
See also A306227 for a similar conjecture.
EXAMPLE
a(11) = 1 with 11 = 1 + 1^5 + pen(-1) + pen(-2).
a(1000) = 1 with 1000 = 0 + 2^5 + pen(8) + pen(-24).
a(5104) = 1 with 5104 = 1 + 3^5 + pen(-3) + pen(57).
a(8196) = 1 with 8196 = 0 + 2^5 + pen(48) + pen(-56).
a(9537) = 1 with 9537 = 1 + 6^5 + pen(17) + pen(30).
a(15049) = 1 with 15049 = 0 + 6^5 + pen(-44) + pen(54).
a(16775) = 1 with 16775 = 1 + 5^5 + pen(-17) + pen(94).
MATHEMATICA
PenQ[n_]:=PenQ[n]=IntegerQ[Sqrt[24n+1]];
tab={}; Do[r=0; Do[If[PenQ[n-x-y^5-z(3z-1)/2], r=r+1], {x, 0, Min[1, (n-1)/2]}, {y, x, (n-1-x)^(1/5)}, {z, -Floor[(Sqrt[12(n-1-x-y^5)+1]-1)/6], (Sqrt[12(n-1-x-y^5)+1]+1)/6}]; tab=Append[tab, r], {n, 1, 100}]; Print[tab]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jan 30 2019
STATUS
approved
Number of ways to write n as x^3 + y^3 + pen(z) + pen(w), where x, y, z, w are nonnegative integers with x <= y and z <= w, and pen(k) denotes the pentagonal number k*(3*k-1)/2.
+10
4
1, 2, 3, 2, 1, 1, 2, 2, 2, 2, 3, 2, 2, 3, 4, 2, 1, 2, 3, 2, 1, 3, 3, 2, 3, 3, 3, 2, 4, 4, 2, 2, 3, 4, 2, 4, 5, 4, 3, 2, 5, 3, 2, 3, 4, 4, 1, 2, 3, 3, 3, 4, 6, 3, 3, 3, 4, 3, 3, 4, 4, 2, 3, 4, 5, 5, 4, 4, 2, 2, 5, 8, 7, 4, 4, 5, 3, 5, 6, 7, 2, 3, 5, 3, 5, 2, 5, 5, 4, 4, 3, 6, 5, 4, 6, 3, 2, 4, 8, 5, 5
OFFSET
0,2
COMMENTS
Conjecture: a(n) > 0 for all n >= 0, and a(n) = 1 only for n = 0, 4, 5, 16, 20, 46. Also, any nonnegative integer not equal to 16 can be written as x^6 + y^3 + pen(z) + pen(w) with x, y, z, w nonnegative integers.
We have verified a(n) > 0 for all n = 0..5*10^6.
EXAMPLE
a(4) = 1 with 4 = 1^3 + 1^3 + pen(1) + pen(1).
a(5) = 1 with 5 = 0^3 + 0^3 + pen(0) + pen(2).
a(16) = 1 with 16 = 2^3 + 2^3 + pen(0) + pen(0).
a(20) = 1 with 20 = 0^3 + 2^3 + pen(0) + pen(3).
a(46) = 1 with 46 = 1^3 + 1^3 + pen(4) + pen(4).
MATHEMATICA
PenQ[n_]:=PenQ[n]=IntegerQ[Sqrt[24n+1]]&&(n==0||Mod[Sqrt[24n+1]+1, 6]==0);
tab={}; Do[r=0; Do[If[PenQ[n-x^3-y^3-z(3z-1)/2], r=r+1], {x, 0, (n/2)^(1/3)}, {y, x, (n-x^3)^(1/3)}, {z, 0, (Sqrt[12(n-x^3-y^3)+1]+1)/6}]; tab=Append[tab, r], {n, 0, 100}]; Print[tab]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jan 31 2019
STATUS
approved
Positive numbers not of the form 2*x^4 + y*(y+1)/2 + z*(z+1)/2 with x,y,z nonnegative integers
+10
3
19, 82, 109, 118, 145, 149, 271, 280, 296, 349, 350, 371, 392, 454, 491, 643, 670, 692, 754, 755, 923, 937, 986, 989, 1021, 1031, 1150, 1189, 1210, 1294, 1346, 1372, 1610, 1682, 1699, 1720, 1819, 1913, 2050, 2065, 2141, 2227, 2479, 2524, 2753, 2996, 3184, 3451, 3590, 3805, 3968, 4129, 4139, 4199, 4261, 4706
OFFSET
1,1
COMMENTS
Conjecture: The sequence has totally 216 terms as listed in the b-file.
As none of the 216 terms in the b-file is divisible by 3, the conjecture implies that for each nonnegative integer n we can write 3*n as 2*x^4 + y*(y+1)/2 + z*(z+1)/2 and hence 12*n+1 = 8*x^4 + (y+z+1)^2 + (y-z)^2, where x,y,z are integers.
Our computation indicates that after the 216-th term 4592329 there are no other terms below 10^8.
It is known that each n = 0,1,2,... can be written as the sum of two triangular numbers and twice a square.
a(217) > 10^9, if it exists. - Giovanni Resta, Apr 14 2020
LINKS
Zhi-Wei Sun, Mixed sums of squares and triangular numbers, Acta Arith. 127(2007), 103-113.
Zhi-Wei Sun, New conjectures on representations of integers (I), Nanjing Univ. J. Math. Biquarterly 34 (2017), no. 2, 97-120. (Cf. Conjecture 1.4(ii).)
EXAMPLE
a(1) = 19 since 19 is the first nonnegative integer which cannot be written as the sum of two triangular numbers and twice a fourth power.
MATHEMATICA
TQ[n_]:=TQ[n]=IntegerQ[Sqrt[8n+1]];
tab={}; Do[Do[If[TQ[n-2x^4-y(y+1)/2], Goto[aa]], {x, 0, (n/2)^(1/4)}, {y, 0, (Sqrt[4(n-2x^4)+1]-1)/2}]; tab=Append[tab, n]; Label[aa], {n, 0, 5000}]; Print[tab]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Apr 14 2020
STATUS
approved
Positive numbers not of the form 4*x^4 + y*(y+1)/2 + z*(z+1)/2, where x,y,z are nonnegative integers.
+10
3
23, 44, 54, 63, 117, 138, 149, 162, 180, 188, 243, 251, 261, 270, 287, 294, 398, 401, 458, 512, 611, 657, 684, 693, 734, 797, 842, 863, 914, 932, 936, 945, 987, 1029, 1047, 1098, 1323, 1401, 1449, 1472, 1484, 1494, 1574, 1608, 1637, 1769, 1792, 1799, 1823, 1839, 1902, 1995
OFFSET
1,1
COMMENTS
Conjecture: The sequence only has 602 terms as listed in the b-file.
Our computation indicates that after the 602-th term 31737789 there are no other terms below 10^8.
It is known that each n = 0,1,2,... can be written as the sum of an even square and two triangular numbers.
LINKS
Zhi-Wei Sun, Mixed sums of squares and triangular numbers, Acta Arith. 127(2007), 103-113.
MATHEMATICA
TQ[n_]:=TQ[n]=IntegerQ[Sqrt[8n+1]];
tab={}; Do[Do[If[TQ[n-4x^4-y(y+1)/2], Goto[aa]], {x, 0, (n/4)^(1/4)}, {y, 0, (Sqrt[4(n-4x^4)+1]-1)/2}]; tab=Append[tab, n]; Label[aa], {n, 0, 2000}]; Print[tab]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Apr 14 2020
STATUS
approved
Number of ways to write n as x^9 + y^3 + z*(z+1) + w*(w+1), where x,y,z,w are nonnegative integers with x <= 2 and z <= w.
+10
2
1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 1, 3, 5, 4, 3, 2, 1, 1, 2, 4, 4, 3, 3, 2, 2, 3, 4, 3, 2, 3, 4, 5, 6, 4, 2, 2, 2, 2, 3, 5, 5, 4, 4, 4, 4, 2, 1, 3, 4, 5, 5, 3, 2, 2, 2, 3, 4, 4, 5, 4, 2, 4, 6, 5, 2, 2, 3, 4, 6, 6, 4, 4, 5, 3, 3, 6, 6, 4, 3, 3, 3, 3, 3, 5, 7, 6, 5, 3, 3, 4, 3, 5, 6, 4, 3, 4, 4, 3, 5, 6
OFFSET
0,2
COMMENTS
Conjecture: a(n) > 0 for all n >= 0, and a(n) = 1 only for n = 0, 11, 17, 18, 47, 108, 109, 234, 359. Also, any nonnegative integer can be written as x^6 + y^3 + z*(z+1) + w*(w+1), where x,y,z,w are nonnegative integers with x <= 2.
We have verified a(n) > 0 for all n = 0..2*10^7.
EXAMPLE
a(11) = 1 with 11 = 1^9 + 2^3 + 0*1 + 1*2.
a(18) = 1 with 18 = 0^9 + 0^3 + 2*3 + 3*4.
a(109) = 1 with 109 = 1^9 + 4^3 + 1*2 + 6*7.
a(234) = 1 with 234 = 0^9 + 6^3 + 2*3 + 3*4.
a(359) = 1 with 359 = 1^9 + 2^3 + 10*11 + 15*16.
a(1978) = 3 with 1978 = 2^9 + 2^3 + 26*27 + 27*28 = 2^9 + 6^3 + 19*20 + 29*30 = 2^9 + 6^3 + 24*25 + 25*26.
MATHEMATICA
TQ[n_]:=TQ[n]=IntegerQ[Sqrt[4n+1]];
tab={}; Do[r=0; Do[If[TQ[n-x^9-y^3-z(z+1)], r=r+1], {x, 0, Min[2, n^(1/9)]}, {y, 0, (n-x^9)^(1/3)}, {z, 0, (Sqrt[2(n-x^9-y^3)+1]-1)/2}]; tab=Append[tab, r], {n, 0, 100}]; Print[tab]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jan 31 2019
STATUS
approved
Number of ways to write n as x*(2x-1) + y*(3y-1) + z*(4z-1) + w*(5w-1), where x,y,z are nonnegative integers and w is 0 or 1.
+10
2
1, 1, 1, 2, 2, 2, 3, 2, 2, 2, 3, 2, 1, 2, 3, 4, 2, 3, 3, 3, 4, 2, 2, 1, 4, 3, 1, 1, 5, 4, 3, 3, 3, 4, 4, 3, 1, 3, 3, 5, 1, 2, 4, 5, 4, 4, 2, 3, 7, 3, 3, 2, 5, 3, 3, 2, 2, 3, 4, 5, 1, 4, 6, 6, 2, 3, 5, 3, 3, 3, 5, 4, 5, 5, 3, 6, 6, 4, 3, 4, 5, 2, 3, 4, 4, 5, 2, 2, 5, 6, 6, 1, 5, 3, 6, 2, 4, 3, 4, 4, 2
OFFSET
0,4
COMMENTS
Conjecture: a(n) > 0 for any nonnegative integer n.
This has been verified for n up to 10^6. By Theorem 1.2 of the linked 2017 paper of the author, any nonnegative integer can be written as x*(2x-1) + y*(3y-1) + z*(4z-1) with x,y,z integers.
We have some other similar conjectures. For example, we conjecture that each n = 0,1,2,... can be written as x*(3x-1)/2 + y*(5y-1)/2 + z*(7z-1)/2 + w*(9w-1)/2) (or x*(x-1) + y*(2y-1) + z*(3z-1) + w*(4w-1)) with x,y,z,w nonnegative integers.
LINKS
Zhi-Wei Sun, A result similar to Lagrange's theorem, J. Number Theory 162(2016), 190-211.
Zhi-Wei Sun, On x(ax+1)+y(by+1)+z(cz+1) and x(ax+b)+y(ay+c)+z(az+d), J. Number Theory 171(2017), 275-283.
EXAMPLE
a(1) = 1 with 1 = 1*(2*1-1) + 0*(3*0-1) + 0*(4*0-1) + 0*(5*0-1).
a(2) = 1 with 2 = 0*(2*0-1) + 1*(3*1-1) + 0*(4*0-1) + 0*(5*0-1).
a(12) = 1 with 12 = 2*(2*2-1) + 1*(3*1-1) + 0*(4*0-1) + 1*(5*1-1).
a(26) = 1 with 26 = 2*(2*2-1) + 1*(3*1-1) + 2*(4*2-1) + 1*(5*1-1).
a(220) = 1 with 220 = 6*(2*6-1) + 7*(3*7-1) + 2*(4*2-1) + 0*(5*0-1).
a(561) = 1 with 561 = 17*(2*17-1) + 0*(3*0-1) + 0*(4*0-1) + 0*(5*0-1).
a(1356) = 1 with 1356 = 23*(2*23-1) + 1*(3*1-1) + 9*(4*9-1) + 1*(5*1-1).
MATHEMATICA
HexQ[n_]:=HexQ[n]=IntegerQ[Sqrt[8n+1]]&&(n==0||Mod[Sqrt[8n+1]+1, 4]==0);
tab={}; Do[r=0; Do[If[HexQ[n-x(5x-1)-y(4y-1)-z(3z-1)], r=r+1], {x, 0, Min[1, (Sqrt[20n+1]+1)/10]}, {y, 0, (Sqrt[16(n-x(5x-1))+1]+1)/8}, {z, 0, (Sqrt[12(n-x(5x-1)-y(4y-1))+1]+1)/6}]; tab=Append[tab, r], {n, 0, 100}]; Print[tab]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jan 31 2019
STATUS
approved
Number of ways to write n as w*(4w+1) + x*(4x-1) + y*(4y-2) + z*(4z-3) with w,x,y,z nonnegative integers.
+10
1
1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 4, 2, 3, 3, 2, 4, 4, 3, 1, 2, 1, 2, 3, 1, 2, 5, 5, 4, 5, 5, 4, 3, 1, 2, 4, 4, 4, 4, 5, 5, 7, 2, 2, 5, 3, 4, 5, 5, 3, 7, 4, 2, 5, 2, 4, 7, 6, 6, 6, 5, 6, 5, 3, 5, 6, 5, 8, 9, 8, 4, 7, 2, 4, 9, 2, 6, 5, 8, 6, 7, 7, 2, 6, 4, 4, 12, 6, 5, 5, 7, 9, 8, 5, 6, 9, 8
OFFSET
0,4
COMMENTS
Conjecture 1: a(n) > 0 for all n >= 0, and a(n) = 1 only for n = 0, 1, 2, 4, 7, 9, 11, 14, 23, 25, 28, 37.
Conjecture 2: Each n = 0,1,2,... can be written as w*(4w+2) + x*(4x-1) + y*(4y-2) + z*(4z-3) with w,x,y,z nonnegative integers.
Conjecture 3: Each n = 0,1,2,... can be written as 4*w^2 + x*(4x+1) + y*(4y-2) + z*(4z-3) with w,x,y,z nonnegative integers.
We have verified that a(n) > 0 for all n = 0..2*10^6. By Theorem 1.3 in the linked 2017 paper of the author, any nonnegative integer can be written as x*(4x-1) + y*(4y-2) + z*(4z-3) with x,y,z integers.
LINKS
Zhi-Wei Sun, A result similar to Lagrange's theorem, J. Number Theory 162(2016), 190-211.
Zhi-Wei Sun, On x(ax+1)+y(by+1)+z(cz+1) and x(ax+b)+y(ay+c)+z(az+d), J. Number Theory 171(2017), 275-283.
EXAMPLE
a(11) = 1 with 11 = 1*(4*1+1) + 1*(4*1-1) + 1*(4*1-2) + 1*(4*1-3).
a(23) = 1 with 23 = 2*(4*2+1) + 1*(4*1-1) + 1*(4*1-2) + 0*(4*0-3).
a(25) = 1 with 25 = 0*(4*0+1) + 1*(4*1-1) + 2*(4*2-2) + 2*(4*2-3).
a(28) = 1 with 28 = 2*(4*2+1) + 0*(4*0-1) + 0*(4*0-2) + 2*(4*2-3).
a(37) = 1 with 37 = 1*(4*1+1) + 1*(4*1-1) + 1*(4*1-2) + 3*(4*3-3).
MATHEMATICA
QQ[n_]:=QQ[n]=IntegerQ[Sqrt[16n+1]]&&Mod[Sqrt[16n+1], 8]==1;
tab={}; Do[r=0; Do[If[QQ[n-x(4x-1)-y(4y-2)-z(4z-3)], r=r+1], {x, 0, (Sqrt[16n+1]+1)/8}, {y, 0, (Sqrt[4(n-x(4x-1))+1]+1)/4}, {z, 0, (Sqrt[16(n-x(4x-1)-y(4y-2))+9]+3)/8}]; tab=Append[tab, r], {n, 0, 100}]; Print[tab]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Feb 01 2019
STATUS
approved

Search completed in 0.007 seconds